Мы берем Платона не
потому, что этот мыслитель был более высокого масштаба, чем Аристотель, но,
во-первых, потому, что Платон занимался пропорциями гораздо больше, чем
Аристотель, и, во-вторых, потому, что его диалоги гораздо больше отражают
традиционные эстетические представления, чем чересчур ученые рассуждения
Аристотеля.
Не следует думать, что эстетические воззрения - плод создания отдельных
философов, или эстетиков, которые их научно формулируют. На деле
эстетические воззрения принадлежат, прежде всего, отдельным народам и вовсе
никак не формулируются, а сквозят во всех оборотах речи, в бытовом
поведении, в характере социально-исторической жизни и в повседневных оценках
окружающей действительности. Поэтому при изучении Платона мы будем обращать
внимание не столько на его официальные формулы, сколько на специфические
обороты его речи, чтобы подсмотреть и подслушать именно то, что он
позаимствовал из общенародной жизни, и в частности из пифагорейских кругов,
и что послужило ему материалом для его философских формул.
Платоновский термин "anJ logia" Цицерон первый - и очень удачно - перевел
как "proportio". Так как платоновская аналогия - это по существу равенство
двух отношений, то и мы здесь будем употреблять термин "пропорция". Таково
же понимание этого термина и в современной математике. Но, конечно, это
понимание слишком отвлеченное. Его надо конкретизировать, и тут могут
встретиться разные неожиданности.
2. Платоновские тексты о пропорциях, не имеющие прямого отношения к
эстетике
Для общей ориентации укажем сначала тексты Платона, не имеющие прямого
отношения к эстетике. В Theaet. 186 с читаем, что все непосредственные
телесные впечатления люди и животные получают тотчас же после рождения;
"соображения же (analogismata) относительно сущности (oysian) и пользы
возникают с трудом и в течение известного времени при помощи многих
предметов и воспитания, если только возникают". Здесь "аналогия" есть вообще
мышление или мысль, возникающая на основе умственной выучки и воспитания.
По-видимому, имеются в виду постоянные акты сравнения одних предметов с
другим, необходимые для развития мысли. То же и в Crat. 399 сл.: "Прочие
животные ничего не рассматривают, не сравнивают (analogidzetai), но
расчленяют из того, что видят; человек же одновременно и видит... и
расчленяет и соображает (logidzetai) то, что видит". В R. P. IV 441 С.
противопоставляется "разумное соображение (to analogisamenon) о лучшем и
худшем" "неразумно аффективному (tAi alogistAs thymoymeni)".
Гораздо ближе к эстетическому значению "аналогии" подходит текст из
Politic. 257 сл., где софист, политик и философ "отличаются один от другого
больше, чем по пропорции (cata ten analogia) нашей науки", т.е. больше, чем
по геометрической пропорции. Сказано это, конечно, в шутливом тоне, так как
едва ли тут мыслится настоящая геометрическая пропорция. Но "пропорция" тут
уже, несомненно, говорит о каких-то отношениях и о взаимном отношении этих
отношений.
Вплотную к учению пропорциональности подходит Epin. 990 e - 991 b -
текст, к сожалению, весьма неясный44. Наш перевод этого текста (тоже не
абсолютно достоверный) таков: "Но что божественно и удивительно для
вдумчивого наблюдателя это то, что всякая [вычисляемая или построяемая]
природа [вещь] отпечатлевает свой вид и род [свои видовые и родовые
образования] при помощи каждый раз особой пропорциональности в связи с тем,
что образующий элемент (dynameos) и ему противоположный [например, основание
и высота четырехугольника] всегда находятся между собою в двойном отношении.
Именно, первая [природа или пропорция] с двойным отношением есть та,
которая, с точки зрения отношения, переходит от числа 1 к числу 2. Двойной
является также и та, которая образует тело и осязаемое, поскольку она
переходит от 1 к 8. А то, что является двойным [может иметь] середину,
которая одинаковым образом больше меньшей и меньше большей части; с другой
стороны, она превосходит одну и превосходится другой частью на одну и ту же
долю своих крайних членов. Так, посредине между 6 и 12 получается величина
полуторная [для второго случая] и величина, равная целому с одной третью
[для первого случая]. Та из этих самых, которая находится [строго] посредине
того и другого, научила людей согласованному и соразмерному исполнению ради
воспитания в ритме и гармонии, даровавши [это] счастливому хороводу Муз".
Если мы правильно понимаем это место, то здесь речь идет об
универсальности диадического начала (наравне, конечно, с монадическим, о
котором вопроса тут специально не поднимается), которое определяет собою
всякое алогическое становление (например, пространство, время, движение и
пр.). Это диадическое начало, понимаемое у Платона (и у пифагорейцев) как
отношение 1:2, повторяется везде совершенно одинаково. Как от точки мы
приходим к прямой, пользуясь этим отношением, так от прямой - к плоскости и
от плоскости - к телу. Тут везде будет отношение 1:2. Если 1 считать за
точку, а 2 за прямую, что 2?2?4 будет плоскостью, а 4?2?8 будет телом. Таким
образом, мы здесь имеем уже не просто отношение, а равенство целого
множества отношений, т.е. пропорцию, "аналогию". От обычной пропорции в
нашем понимании она отличается только тем, что она обладает зрительным
характером, т.е. в данном случае геометрическим, и тем, что она - это еще
более конкретно - говорит о пространствах разных измерений. Измерения
пространства, оказывается, возникают последовательно одно из другого путем
некоторой особой операции, связанной - в представлении Платона - с
диадическим принципом. Тождество этих операций при переходе от точки к
линии, от линии к прямой и от прямой к плоскости и есть платоновская
пропорция в данном случае. Она, таким образом, далеко выходит за пределы как
числовых, так и геометрических измеримых отношений, поскольку переход от
одного пространственного измерения к другим не может совершиться ни от каких
бы то ни было арифметических операций, ни от количественных
пространственных. Переход от одного измерения пространства к другому есть
переход качественный, если не прямо понятийный.
И у Платона, и у пифагорейцев, и у неоплатоников диада (или, как часто у
них говорится, "неопределенная диада") есть принцип становления, в отличие
от нестановящегося и устойчивого бытия, которое они называют "монадой".
Однако становление это не нужно понимать в том отвлеченном смысле, как это
понимается в новейшей философии.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
потому, что этот мыслитель был более высокого масштаба, чем Аристотель, но,
во-первых, потому, что Платон занимался пропорциями гораздо больше, чем
Аристотель, и, во-вторых, потому, что его диалоги гораздо больше отражают
традиционные эстетические представления, чем чересчур ученые рассуждения
Аристотеля.
Не следует думать, что эстетические воззрения - плод создания отдельных
философов, или эстетиков, которые их научно формулируют. На деле
эстетические воззрения принадлежат, прежде всего, отдельным народам и вовсе
никак не формулируются, а сквозят во всех оборотах речи, в бытовом
поведении, в характере социально-исторической жизни и в повседневных оценках
окружающей действительности. Поэтому при изучении Платона мы будем обращать
внимание не столько на его официальные формулы, сколько на специфические
обороты его речи, чтобы подсмотреть и подслушать именно то, что он
позаимствовал из общенародной жизни, и в частности из пифагорейских кругов,
и что послужило ему материалом для его философских формул.
Платоновский термин "anJ logia" Цицерон первый - и очень удачно - перевел
как "proportio". Так как платоновская аналогия - это по существу равенство
двух отношений, то и мы здесь будем употреблять термин "пропорция". Таково
же понимание этого термина и в современной математике. Но, конечно, это
понимание слишком отвлеченное. Его надо конкретизировать, и тут могут
встретиться разные неожиданности.
2. Платоновские тексты о пропорциях, не имеющие прямого отношения к
эстетике
Для общей ориентации укажем сначала тексты Платона, не имеющие прямого
отношения к эстетике. В Theaet. 186 с читаем, что все непосредственные
телесные впечатления люди и животные получают тотчас же после рождения;
"соображения же (analogismata) относительно сущности (oysian) и пользы
возникают с трудом и в течение известного времени при помощи многих
предметов и воспитания, если только возникают". Здесь "аналогия" есть вообще
мышление или мысль, возникающая на основе умственной выучки и воспитания.
По-видимому, имеются в виду постоянные акты сравнения одних предметов с
другим, необходимые для развития мысли. То же и в Crat. 399 сл.: "Прочие
животные ничего не рассматривают, не сравнивают (analogidzetai), но
расчленяют из того, что видят; человек же одновременно и видит... и
расчленяет и соображает (logidzetai) то, что видит". В R. P. IV 441 С.
противопоставляется "разумное соображение (to analogisamenon) о лучшем и
худшем" "неразумно аффективному (tAi alogistAs thymoymeni)".
Гораздо ближе к эстетическому значению "аналогии" подходит текст из
Politic. 257 сл., где софист, политик и философ "отличаются один от другого
больше, чем по пропорции (cata ten analogia) нашей науки", т.е. больше, чем
по геометрической пропорции. Сказано это, конечно, в шутливом тоне, так как
едва ли тут мыслится настоящая геометрическая пропорция. Но "пропорция" тут
уже, несомненно, говорит о каких-то отношениях и о взаимном отношении этих
отношений.
Вплотную к учению пропорциональности подходит Epin. 990 e - 991 b -
текст, к сожалению, весьма неясный44. Наш перевод этого текста (тоже не
абсолютно достоверный) таков: "Но что божественно и удивительно для
вдумчивого наблюдателя это то, что всякая [вычисляемая или построяемая]
природа [вещь] отпечатлевает свой вид и род [свои видовые и родовые
образования] при помощи каждый раз особой пропорциональности в связи с тем,
что образующий элемент (dynameos) и ему противоположный [например, основание
и высота четырехугольника] всегда находятся между собою в двойном отношении.
Именно, первая [природа или пропорция] с двойным отношением есть та,
которая, с точки зрения отношения, переходит от числа 1 к числу 2. Двойной
является также и та, которая образует тело и осязаемое, поскольку она
переходит от 1 к 8. А то, что является двойным [может иметь] середину,
которая одинаковым образом больше меньшей и меньше большей части; с другой
стороны, она превосходит одну и превосходится другой частью на одну и ту же
долю своих крайних членов. Так, посредине между 6 и 12 получается величина
полуторная [для второго случая] и величина, равная целому с одной третью
[для первого случая]. Та из этих самых, которая находится [строго] посредине
того и другого, научила людей согласованному и соразмерному исполнению ради
воспитания в ритме и гармонии, даровавши [это] счастливому хороводу Муз".
Если мы правильно понимаем это место, то здесь речь идет об
универсальности диадического начала (наравне, конечно, с монадическим, о
котором вопроса тут специально не поднимается), которое определяет собою
всякое алогическое становление (например, пространство, время, движение и
пр.). Это диадическое начало, понимаемое у Платона (и у пифагорейцев) как
отношение 1:2, повторяется везде совершенно одинаково. Как от точки мы
приходим к прямой, пользуясь этим отношением, так от прямой - к плоскости и
от плоскости - к телу. Тут везде будет отношение 1:2. Если 1 считать за
точку, а 2 за прямую, что 2?2?4 будет плоскостью, а 4?2?8 будет телом. Таким
образом, мы здесь имеем уже не просто отношение, а равенство целого
множества отношений, т.е. пропорцию, "аналогию". От обычной пропорции в
нашем понимании она отличается только тем, что она обладает зрительным
характером, т.е. в данном случае геометрическим, и тем, что она - это еще
более конкретно - говорит о пространствах разных измерений. Измерения
пространства, оказывается, возникают последовательно одно из другого путем
некоторой особой операции, связанной - в представлении Платона - с
диадическим принципом. Тождество этих операций при переходе от точки к
линии, от линии к прямой и от прямой к плоскости и есть платоновская
пропорция в данном случае. Она, таким образом, далеко выходит за пределы как
числовых, так и геометрических измеримых отношений, поскольку переход от
одного пространственного измерения к другим не может совершиться ни от каких
бы то ни было арифметических операций, ни от количественных
пространственных. Переход от одного измерения пространства к другому есть
переход качественный, если не прямо понятийный.
И у Платона, и у пифагорейцев, и у неоплатоников диада (или, как часто у
них говорится, "неопределенная диада") есть принцип становления, в отличие
от нестановящегося и устойчивого бытия, которое они называют "монадой".
Однако становление это не нужно понимать в том отвлеченном смысле, как это
понимается в новейшей философии.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210