ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

при современных
расчетах, в отличие от средневековых, она учитывается, и результат
обычно выглядит не как одно-единственное итоговое число, а как
интервал (от и до), в котором и лежит, но не известно точно, где
именно, искомый ответ. Эта размытость возникает потому, что,
во-первых, никакой человек и никакая ЭВМ не способны вести расчеты
с бесконечно большой точностью,
во-вторых, не бесконечно точны и "мировые константы", участвующие
в расчетах,
в-третьих, не бесконечно строго соблюдаются природой математически
сформулированные человеком "законы природы",
в-четвертых, любой расчет всегда проводится по
модели событий, которая неизбежно проще, чем реальное течение этих
событий, и неизбежно чего-то не принимает во внимание.
Впрочем, в последние десятилетия математики и физики научились, как
уже сказано, учитывать суммарное влияние этих неточностей - представляя
результат в виде интервала. Конечно, исходное предположение о том,
каким должен быть результат, или авторитетное мнение специалиста
нередко принуждают расчетчика "прижимать" получаемый результат к тому
или иному концу этого интервала; хотя, впрочем, за его пределы
результат едва ли выйдет, если расчеты проводились добросовестно.
Все это сказано затем, чтобы объяснить, почему астрономы,
обсчитывая одно и то же, получали несколько различные результаты,
и чтобы эти различия не заставили читателя сомневаться в их
добросовестности или профессиональной компетентности.
Итак, вернемся к первому солнечному затмению.
Сам Петавиус вычислил, что фаза этого затмения в Афинах была
всего 10"25; однако Кеплер определил его фазу равной 12" (что и
есть показатель полного солнечного затмения). С одной стороны,
авторитет Фукидида и авторитет Кеплера сработали здесь совместно,
определив всеобщее признание предложенной Петавиусом датировки; но,
с другой стороны, зерно сомнения было уже посеяно. Последовали
проверки и перепроверки расчетов.
Стройк - 11".
Цех - 10"38.
Гофман - 10"72.
Хейс - 7"9 (!).
Гинцель - 10" в Афинах и 9"4 в Риме.
Это значит, что была открыта примерно 1/6 часть солнечного
диска. А это - почти ясный день, и о том, чтобы увидеть звезды,
не может быть и речи!.. Последние результаты и считаются сейчас
окончательными; едва ли будущие уточнения заметно изменят их; во
всяком случае, очевидно, что затмение было частичным, далеко не
полным. Более того, согласно уточненным вычислениям Гинцеля, затмение
это было кольцеобразным. Это значит, что ниоткуда на Земле оно не
могло наблюдаться как полное! Более того, это затмение прошло Крым
только в 17 ч. 22 мин. местного времени (а по Хейсу, даже в 17 ч.
54 мин.), это уже не "послеполуденное", а скорей вечернее затмение.
Кажется, надежды историков на то, что старик Кеплер все-таки
был прав, хоть и колебались каждый раз, когда очередной астроном
обнародовал свои результаты, окончательно рухнули только после
расчетов Гинцеля; они впали в уныние и впервые усомнились в
добросовестности и точности... Петавиуса? - нет, Фукидида. Надо же,
"были видны звезды". Цех пытался хоть как-нибудь утешить их,
объясняя это печальное недоразумение "ясным небом Афин" и "острым
зрением древних". (Кстати: таким ли уж и острым? Древние греки
проверяли зрение по Мицару: если видишь его как двойную звезду,
значит, зрение отменное. Но и нынешние люди со стопроцентным
зрением, ничуть не уступая древним, видят его двойным.) Другие
астрономы, Хейс и Линн, решили выручить историков предположением,
что видны были не звезды, а яркие планеты. Ну, хотя бы всего
парочку планет (чтобы оправдать множественное число)!.. И что же?
Юпитер и Сатурн вообще отказались участвовать в этих играх, скрывшись
под горизонтом, Марс не далеко от них ушел, оказавшись всего в 3
градусах над горизонтом, где трудно увидеть звезду или планету даже
в ясную и темную ночь, и только всегда близкая к Солнцу Венера,
"возможно, была видна".
Джонсон предлагал в качестве решения другое солнечное затмение,
случившееся всего двумя годами ранее; но оно оказалось еще
частичнее, да и по другим приметам совсем не подходило.
Стокуэлл всячески "натягивал" параметры, сознательно стараясь
за уши подтащить ответ поближе к кеплеровскому; но при всех
стараниях он не смог получить результат выше 11"06.
Астрономы Гофман, а вслед за ним и Р.Ньютон первыми вслух
произнесли то, что (можно предполагать) у историков давно уже вертелось
на языке: звезды у Фукидида - просто риторическое украшение. Знал
он, дескать, что при затмениях высшего сорта появляются звезды, вот
и блеснул эрудицией. Нигде не преувеличивал, а тут согрешил...
Однако на самом-то деле текст Фукидида читается однозначно, и
в том, что звезды при этом затмении в самом деле сверкали на
почерневшем небе, сомневаться не приходится: "Тем же летом в новолуние
(когда это, видимо, только и возможно) после полудня произошло
солнечное затмение, а затем солнечный диск снова стал полным.
Некоторое время солнце имело вид полумесяца, и на небе появилось даже
несколько звезд".
Между тем расчеты расчетами, но во всех исторических справочниках
и учебниках дата этого пришедшегося на Пелопоннесскую войну
затмения (во время которого было видно звезды!) на протяжении уже
трех с половиной веков остается прежней - все та же, предложенная
Петавиусом дата затмения 3 августа 431 года до н.э. (когда звезд не
было!). Почему? По той простой причине, что в окрестных столетиях
ни одного подходящего затмения не нашлось, а это более-менее
подходит, хоть и большой натяжкой.
Однако интересно (как говорится, "чисто академический
интерес"): а что, если рассмотреть не только окрестные столетия?
Найдется ли когда-нибудь точно такая триада затмений, какой она
описана Фукидидом (все-таки, похоже, очень добросовестным
историком)?
Найдется. Точнее, нашлась. И даже не одна.
Первое решение найдено Н.А.Морозовым (см. том IV его книги
"Христос"):
1) 2/VIII 1133 г. н.э.;
2) 20/III 1140 г. н.э.;
3) 28/VIII 1151 г. н.э.
Второе - автором этой книги:
1) 22/VIII 1039 г. н.э.;
2) 9/IV 1046 г. н.э.;
3) 15/IX 1057 г. н.э.
Кстати, примечателен тот факт, что точные решения вообще
удалось найти; возможность этого (если допустить, что Фукидид
действительно "преувеличил") совсем не была заранее очевидна.
Ну, а теперь можно спросить историка: чья же, по его мнению,
здесь ошибка? Петавиуса? Либо же Фукидида вкупе с современными
астрономами и математиками? Если авторитет новейших вычислительных
средств окажется в его глазах выше, чем авторитет вычислительных
возможностей глубоко уважаемого Петавиуса, и он согласится, что
Фукидид был все-таки прав, нам остается только предложить ему
выбрать одну из этих датировок.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187