ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Исследователи полагают, что префронтальная кора извлекает информацию из
242
долговременной памяти, гиппокамп же осуществляет консолидацию новых ассоциаций, которые так нужны для корректировки поведения с учетом недавно произошедших событий (см. раздел «Рабочая память»).
Существует и другое объяснение взаимосвязи обеих структур. Гиппокамп, так же как и префронтальная кора, причастен, к извлечению информации из долговременной памяти, которая ему необходима для сопоставления с текущими стимулами, чтобы вынести вердикт о новизне или его тождестве с прогнозом.
Сейчас уже многое известно о функциях моторной коры. Ее рассматривают как центральную структуру, управляющую самыми тонкими и точными произвольными движениями, посылающую свои сигналы к мотонейронам спинного мозга (так называемая пирамидная система).'Именно в моторной коре строится конечный и конкретный вариант моторного управления движением. Моторная кора использует оба принципа управления: контроль через петли обратной сенсорной связи и через механизм программирования. Это достигается тем, что к ней сходятся сигналы от мышечной активности, от сенсомоторной, зрительной и других отделов коры, которые и используются для моторного контроля и коррекции движения.
Моторная кора включает первичную и дополнительную моторные области (ДМО), характеризующиеся соматотопической организацией с элементами множественного представительства периферии в этих отделах моторной коры. Первичная моторная кора расположена вдоль центральной борозды преимущественно в прецентральной извилине. В 5-м слое первичной моторной коры находятся гигантские клетки Беца, аксоны которых входят в состав пирамидного тракта, образующего эфферентные пути от моторной коры к мотонейронам спинного мозга. ДМО расположена в глубине межполушарной щели, примыкая к первичной моторной коре.
Клетки первичной моторной коры образуют колонки, которые возбуждают и тормозят группу функционально близких мотонейронов. Двигательная колонка представляет собой объединение нейронов, регулирующих работу нескольких мышц, действующих на сустав. При раздражении через микроэлектрод различных колонок возникают разнообразные движения в определенном суставе. Таким образом, в разных колонках представлены не отдельные мышцы, а разные движения. Это объясняет результаты А. Георго-пулоса (Georgopulos А.) из университета Дж. Гопкинса, который нашел в моторной коре (в прецентральной извилине) обезьяны нейроны, кодирующие движения руки. Он вычислял векторы дви-
243
жений на основе суммирования частоты импульсации многих нейронов, возбуждающихся перед движением. По его данным, вектор движения определяется результатом активности не более чем 100 нейронов. Он формируется за несколько миллисекунд до сокращения соответствующих мышц, приводящих руку в движение.
Премоторная кора (дорзальная и вентральная области) содержит представительство каждой ноги и руки, образуя прямые связи с мотонейронами спинного мозга. Дорзальная премоторная кора, кроме того, имеет раздельное представительство дистальной и про-ксимальной части руки. Разряды нейронов дорзолатеральной пре-фронтальной и дорзальной премоторной коры тесно коррелируют со зрительно управляемыми движениями, характеризуясь селективностью в отношении направления движений конечностей.
Возникает вопрос: что именно отражает разряд нейронов в премоторной и префронтальной коре? Чтобы ответить на него, Г. Пеллегрино и С. Вайс (Pellegrino G., Wise S.) провели две серии опытов. В одной серии обезьяна двигала рычаг в направлении к цели, в другой — появление стимула в разных точках пространства служило сигналом к движению всегда в одном направлении. Стимул мог появляться в одной из 8 позиций при строгой фиксации взора на центр экрана. Оказалось, что премоторные нейроны разряжались избирательно по отношению к целевому движению, а не к самому движению как таковому. В отличие от них нейроны префронтальной коры отвечали избирательно на цель независимо от типа движения.
Важную функцию в управлении движением выполняет мозжечок. Он обеспечивает сохранение равновесия, поддержание позы, регуляцию и перераспределение мышечного тонуса, тонкую координацию движений. Нейроны моторной коры находятся под контролирующим влиянием мозжечка. В опытах с регистрацией нейронной активности у обезьян показано, что при выполнении ими заученного движения активность нейронов зубчатого ядра мозжечка на 10 мс опережает изменение активности нейрона в моторной коре, которое предшествует появлению мышечного движения. Влияние сигналов, поступающих из мозжечка, на активность нейронов моторной коры у обезьян также установлено в опытах с временным понижением температуры мозжечка. Во время его охлаждения импульсация нейронов моторной коры и соответствующее выученное движение запаздывали или вообще были невозможны. Многие авторы отождествляют мозжечок с мощным процессором, в котором перерабатывается огромная информация. Полагают, что он обеспечивает временную избирательную настройку при выполнении любого двигательного акта, точное выполнение дви-244
жения во времени. Поражение мозжечка ведет к дисметрии — плохому выполнению точных движений.
Кроме сигналов от мозжечка, в моторную кору поступают сигналы от базальных ганглиев — структуры, которая ответственна за хранение как двигательных программ врожденного поведения (пищевого, питьевого и др.), так и приобретенных навыков. Показано, что клетки базальных ганглиев, так же как и мозжечка, разряжаются задолго до движений, совершаемых животными в ответ на сигнал. По данным Н.Ф. Суворова (1980), разряды нейронов хвостатого ядра кошки на 50—150 мс опережают ЭМГ-ком-понент хватательного движения лапы, направленного на пищу, т.е. возникающего как натуральный пищевой рефлекс. В хвостатом ядре были найдены также нейроны, у которых возбуждение опережало условную двигательную пищевую и оборонительную реакции. Эти реакции у нейронов появлялись с выработкой условного рефлекса и исчезали с его угасанием. Нейроны с реакциями опережающими двигательные оборонительные и пищевые условные рефлексы, локализованы в различных частях хвостатого ядра.
Г. Могенсон и его коллеги (Mogenson G.L., Jones D.L., Jim C.J., 1980), рассматривая механизм локомоции и оральных двигательных актов, связанных с глотанием, поеданием пищи и питьем, в качестве ключевых структур мозга выделяют хвостатое ядро и прилегающее ядро стриатума (часть базальных ганглиев). Функция ХЯ — обеспечение произвольных действий в составе навыка. Прилегающее ядро (n.accumbens) имеет отношение к врожденному поведению. Инъекция ДА в прилегающее ядро вызывает у крыс локомоторные реакции в открытом поле.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122