ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


До того как целенаправленное поведение начнет осуществляться, развивается еще одна стадия поведенческого акта —- стадия
236
программирования действия, или эфферентного синтеза. На этом этапе осуществляется интеграция соматических и вегетативных возбуждений. Для данной стадии характерно, что действие уже сформировано, но еще не претворено в жизнь.
Следующая стадия — реальное выполнение программы действия под влиянием эфферентного возбуждения, достигающего исполнительных механизмов.
Благодаря аппарату акцептора результатов действия и эфферентному синтезу, организм имеет возможность сравнить ожидаемые результаты с поступающей афферентной информацией о реальных результатах и параметрах совершаемого действия. Именно результаты сравнения определяют последующее построение поведения: оно либо корректируется, либо прекращается, как в случае достижения конечного результата. И тогда поведенческий акт (действие) завершается последней санкционирующей стадией-удовлетворением потребности.
Таким образом, определяющим моментом функциональных систем, формирующих разнообразные формы поведения животных и человека, является не само действие, а полезный для системы и организма в целом результат поведения. Инициативная роль в формировании целенаправленного поведения принадлежит исходным потребностям и соответствующим им мотивациям, которые мобилизуют генетически детерминированные или индивидуально приобретенные программы поведения (Судаков К.В., 1990).
Намерение выполнить определенное движение проявляется в ЭЭГ в виде потенциала готовности. Этот потенциал отражает антиципацию (предвидение) будущих событий. Впервые явление антиципации в лабораторных условиях было изучено И.П. Павловым в виде рефлекса на время, когда у собаки слюноотделение заранее нарастало к привычному моменту приема пищи.
Чтобы выявить потенциал готовности, антиципацию, связанную с движением, испытуемому дают инструкцию: регулярно, через постоянный промежуток времени, воспроизводить какое-либо движение. В этих условиях началу движения предшествует медленная негативная волна, которая и представляет потенциал готовности. Возникая за 800 мс до начала движения, потенциал готовности за 90 мс перед выполнением движения сменяется быстрым потенциалом, связанным с посылкой управляющей команды. Потенциал готовности развивается биполярно в премоторной коре и отражает формирование замысла движения. Быстрый потенциал возникает в контралатеральном полушарии и отражает работу нейронов моторной коры.
Потенциал готовности часто трудно отделить от волны ожида-
237
ния. Последнюю легко обнаружить в потенциалах мозга в ситуации, когда один стимул служит сигналом к появлению второго, значимого раздражителя. На интервале между предупреждающим и императивным стимулами в лобных и центральных отделах коры развивается медленно нарастающая негативность, которая достигает пика к моменту нанесения второго, императивного стимула.
Эта медленная негативная волна впервые была обнаружена Греем Уолтером (1966) — известным английским физиологом из Берденовского неврологического института в Бристоле. Он дал ей название «волна ожидания», или «волна ?>>. Сегодня чаще используют термин «условное негативное отклонение». Волна ожидания, которую можно записать, используя усилитель постоянного тока или переменного с большой (5—8 с) постоянной времени, связана с ожиданием сенсорной информации (рис. 52).
В управлении двигательным поведением различают стратегию и тактику. Стратегию движения определяет конкретная мотивация (биологическая, социальная и др.). Именно на ее основе определяется цель поведения, т.е. то, что должно быть достигнуто. В структуре поведенческого акта цель закодирована в акцепторе результатов действия. В отношении двигательного акта это выглядит как формирование двигательной задачи, того, что следует делать. Под тактикой понимают конкретный план действий, т.е. то, как будет достигнута цель поведения, с помощью каких двигательных ресурсов и способов действия. Тактическое планирование движения непосредственно представлено в блоке программ. При построении двигательной программы учитывают множество факторов, в том числе общую стратегию, пространственно-временные характеристики среды, сигнальную значимость ее стимулов, прошлый жизненный опыт.
8.2. ДВА ПРИНЦИПА ПОСТРОЕНИЯ ДВИЖЕНИЯ
Управление двигательными актами строится на двух основных принципах — принципе сенсорных коррекций текущего движения по цепи обратной связи и принципе прямого программного управления. Последний особенно важен для тех случаев, когда имеются быстрые изменения в системе, ограничивающие возможность сенсорных коррекций.
Накоплено множество экспериментальных фактов, подтверждающих реальное существование двух механизмов управления движением: посредством центральных моторных программ и с помощью обратной афферентации, которая используется для непрерывного контроля и коррекции выполняемого движения. Для многих
238
t Щелчок
—————————— Вспышки
ttttt———
Вспышки
Вспышки, прекращенные
Рис. 52. Волна ожидания при отведении ЭЭГ от вертекса.
1 и 2 — реакции на изолированное действие щелчка и вспышек света; 3 —на комбинированное действие обоих стимулов, следующих один за другим; 4 — Е-волна (ожидания), когда испытуемый должен был нажимать на кнопку при появлении вспышек света и тем самым их прерывать. Интервал между щелчком (предупреждающим стимулом) и вспышками (императивным стимулом) фиксирован. Видна медленная пегативность (отклонение вверх), предшествующая появлению императивного стимула (по Г. Уолтеру, 1966).
видов движения управление может осуществляться одновременно двумя механизмами при разном их соотношении для движений, различающихся сложностью и уровнем организации
Существуют два типа командных нейронов. Одни из них лишь запускают ту или другую двигательную программу, но не участвуют в ее дальнейшем осуществлении. Это нейроны-тригеры. Приме-
239
ром такого нейрона является маутнеровская клетка рыбы. Командные нейроны другого типа получили название воротных нейронов. Они поддерживают или видоизменяют двигательные программы, лишь будучи постоянно возбужденными. Такие нейроны обычно управляют позными или ритмическими движениями. В качестве примера можно привести нейрон генератора локомоторного ритма у таракана.
На принципиальную роль афферентации в регуляции движения и поведения в целом указывали НА. Бернштейн (1966) и П.К. Анохин (1968). Сенсорные раздражения не только могут запускать движение, но и выполнять корректирующую функцию. Обратная аффе-рентация, сигнализирующая о результатах действия, сопоставляется с программой движений и служит уточнению координат цели и траектории движения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122