ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

раздел «Томографические методы исследования мозга»).
2.3. МАГНИТОЭНЦЕФАЛОГРАФИЯ
Значительные успехи в локализации источников активности мозга, достигнутые в последнее десятилетие, связаны с развитием магнитоэнцефалографии (Холодов Ю.А. и др., 1987; Naatanen R., 1992). Первые электромагнитные поля (ЭМП) нервной системы были зарегистрированы у лягушки. Они были записаны с расстояния 12 мм при возбуждении седалищного нерва. Биологические поля мозга и различных органов очень малы. Магнитное поле человеческого сердца составляет около 1 миллионной доли земного магнитного поля, а человеческого тела — в 100 раз слабее. Магнитное поле сердца человека впервые было записано в 1963 г. Первые же измерения ЭМП мозга человека были сделаны Д. Коеном (Koen D.) из Массачусетского технологического института в 1968 г. Магнитным методом он зарегистрировал спонтанный альфа-ритм у здоровых испытуемых и изменение активности мозга у эпилептиков. Первые вызванные потенциалы с помощью магнитометров были получены несколько лет спустя.
Сначала для регистрации ЭМП были использованы индукционные катушки с большим количеством витков. С увеличением их числа чувствительность системы возрастает.Число витков в первых таких катушках достигало миллиона. Однако чувствительность их оставалась невысокой и они не регистрировали постоянное ЭМП.
Создание новых магнитометров связано с открытием Б. Джо-зефсона, за которое он получил Нобелевскую премию. Работая в области криогенной технологии со сверхпроводящими материалами, он обнаружил, что между двумя сверхпроводниками, разде-
22
ленными диэлектриком, возникает ток, если они находятся вблизи ЭМП. Эта система реагировала на переменные и постоянные ЭМП. На основе открытия Б. Джозефсона были созданы СКВИДы — сверхпроводниковые квантомеханические интерференционные датчики. Магнитометры, работающие на базе СКВИДа, очень дороги, их необходимо регулярно заполнять жидким гелием в качестве диэлектрика. Дальнейшее совершенствование магнитометров связано с разработкой квантовых магнитометров с оптической накачкой (МОИ). Созданы МОНы, в которых вместо жидкого гелия используются пары щелочного металла цезия. Это более дешевые системы, не требующие криогенной техники. В них световой сигнал поступает по световодам от общего источника и достигает фотодетекторов. Колебания ЭМП мозга человека модулируют сигнал на фотодетекторах. По его колебаниям судят об электромагнитных волнах мозга. Каждый магнитометр имеет множество датчиков, что позволяет получать пространственную картину распределения ЭМП. Современные магнитометры (СКВИДы и др.) обладают высокой временной и пространственной разрешающей способностью (до 1 мм и 1 мс). Магнитоэнцефалограмма (МЭГ) по сравнению с ЭЭГ обладает рядом преимуществ. Прежде всего это связано с бесконтактным методом регистрации. МЭГ не испытывает также искажений от кожи, подкожной жировой клетчатки, костей черепа, твердой мозговой оболочки, крови и др., так как магнитная проницаемость для воздуха и для тканей примерно одинакова. В МЭГ отражаются только источники активности, которые расположены тангенциально (параллельно черепу), так как МЭГ не реагирует на радиально ориентированные источники, т.е. расположенные перпендикулярно поверхности. Благодаря этим свойствам МЭГ позволяет определять локализацию только корковых диполей, тогда как в ЭЭГ суммируются сигналы от всех источников независимо от их ориентации, что затрудняет их разделение. МЭГ не требует индифферентного электрода и снимает проблему выбора места для реально неактивного отведения. Для МЭГ, так же как и для ЭЭГ, существует проблема увеличения соотношения «сигнал-шум», поэтому усреднение ответов также необходимо. Из-за различной чувствительности ЭЭГ и МЭГ к источникам активности особенно полезно комбинированное их использование.
2.4. ИЗМЕРЕНИЕ ЛОКАЛЬНОГО МОЗГОВОГО КРОВОТОКА
Мозговая ткань не имеет собственных энергетических ресурсов и зависит от непосредственного притока кислорода и глюкозы, поставляемых через кровь. Поэтому увеличение локального крово-
23
тока может быть использовано в качестве косвенного признака локальной мозговой активации. Метод разработан в 50-х и начале 60-х годов. Он основан на измерении скорости вымывания из ткани мозга изотопов ксенона или криптона (изотопный клиренс) или же атомов водорода (водородный клиренс). Скорость вымывания радиоактивной метки прямо связана с интенсивностью кро-вотока. Чем интенсивнее кровоток в данном участке мозга, тем быстрее в нем будет накапливаться содержание радиоактивной метки и быстрее происходить ее вымывание. Увеличение кровотока коррелирует с ростом уровня метаболической активности мозга. Регистрация метки производится с помощью многоканальной гамма-камеры. Используют шлем со специальными сцинтилляцион-ными датчиками (до 254 штук). Применяют два метода введения изотопов. При инвазивном методе изотоп вводят в кровяное русло через сонную артерию. Регистрацию начинают через 10 с после инъекции и продолжают в течение 40—50 с. Недостаток этого метода состоит в том, что можно исследовать только одно полушарие, которое связано с той сонной артерией, в которую сделана инъекция. Кроме того, не все области коры снабжаются кровью через сонные артерии.
Более широкое распространение получил неинвазивный способ измерения локального кровотока, когда изотоп вводят через дыхательные пути. Человек в течение 1 мин вдыхает очень малое количество инертного газа ксенона-133, а затем дышит нормальным воздухом. Через дыхательную систему изотоп попадает в кровяное русло и достигает мозга. Метка уходит из мозговой ткани через венозную кровь, возвращается к легким и выдыхается. Скорость вымывания изотопа в различных точках поверхности полушарий преобразуется в значения локального кровотока и представляется в виде карты метаболической активности мозга. В отличие от инвазивного метода в этом случае метка распространяется на оба полушария.
При измерении водородного клиренса в мозг вживляют ряд металлических электродов для регистрации сдвига электрохимического потенциала, который создается подкислением тканей ионами водорода. По его уровню судят об активности локального участка мозга. Этот метод на человеке применяют в медицинских целях: для уточнения клинического диагноза при опухолях, инсультах, травмах.
Пространственное разрешение методов, применяемых для измерения локального мозгового кровотока, достаточно хорошее: для изотопных датчиков — 2 см, для измерения водородного клиренса — 250 мкм. Существенным недостатком этих методов является
24
их низкое временное разрешение. Каждое измерение длится около 2 мин.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122