Его зовут Шахин. Это лихое имя, по-арабски оно означает «сокол-сапсан». Он и продолжит твое обучение в Алжире.
Позиционный анализ
Шахматы — это искусство анализа.
Михаил Ботвинник, советский гроссмейстер, чемпион мира по шахматам
Шахматы — это игра воображения.
Давид Бронштейн, советский гроссмейстер
Wenn ihr’s nicht fuhlt, ihr werdet’s nicht erjagen. (Когда в вас чувства нет, то это труд бесцельный).
Иоганн Вольфганг Гёте. Фауст
Дорога петляла по берегу моря, на каждом повороте открывался захватывающий вид. Подножия скал тонули в тучах брызг, а выше, там, куда не доставали морские волны, камни густо заросли лишайником и мелкими цветущими растениями. Золотистые бутоны ледяника покачивались среди кружевной вязи заостренных листьев, выстилающей скалы поверх соляной корки. Море отливало глубоким зеленым цветом. Цветом глаз Соларина.
Да, пейзаж был прекрасен, но я не могла оценить его красоту по достоинству. Прошлая ночь принесла слишком много загадок, предположения и версии толкались у меня в голове, норовя оттеснить друг дружку. И пока такси несло меня по открытой эстакаде в Алжир, я решила воспользоваться этими минутами, чтобы привести мысли в порядок.
Каждый раз, когда я пыталась сложить два и два, у меня получалось восемь. Восьмерки были повсюду, куда ни посмотри. Сначала на них указала предсказательница, когда намекнула на мой день рождения. Потом Мордехай, Шариф и Соларин дружно принялись твердить, что это, дескать, магический знак. Русский вообще заявил, что на моей ладони не только линии образуют восьмерку, но и присутствует некая загадочная «формула восьми». И с этими словами он растворился в ночи, забыв вернуть ключ от номера и предоставив мне Шарифа в качестве провожатого до отеля.
Шариф, разумеется, очень хотел узнать, кто был этот красавец, который привел меня в кабаре, и почему он так неожиданно исчез. Я расписала ему, как лестно для простой девушки вроде меня, когда ей назначают не одно, а целых два свидания в первый же вечер после прибытия на чужой континент. Больше ничего я объяснять не стала, предоставив Шарифу делать выводы самостоятельно. Он и его головорезы подвезли меня до отеля в военном джипе.
Когда мы добрались до гостиницы, выяснилось, что ключ от комнаты оставлен у портье, а велосипед Соларина исчез из-под моего окна. Поскольку с мыслью хорошенько выспаться все равно можно было попрощаться, я решила посвятить остаток ночи небольшому научному исследованию.
Итак, теперь я знала о существовании некой формулы, и проход коня был тут совершенно ни при чем. Как и предположила Лили, это была формула другого рода, ее не сумел расшифровать даже Соларин. И она была каким-то образом связана с шахматами Монглана.
Ним пытался предупредить меня об этом, не так ли? Он прислал мне книги о математических формулах и играх. Я решила начать с той, которая вызвала жгучий интерес Шарифа, с книги самого Нима — брошюры о числах Фибоначчи. И я принялась штудировать этот занудный труд, К рассвету у меня появилось ощущение, что мое решение себя оправдало, хотя я пока и не могла точно сказать, как именно. Числа Фибоначчи, оказывается, могут использоваться не только в анализе графиков торгов. Вот каким образом они работают.
Фибоначчи предложил последовательность целых чисел, где каждое последующее число начиная с третьего равно сумме двух предыдущих. Начинается этот ряд с двух единиц. Итак, 1 + 1-2; 2 + 1-3; 3 + 2 = 5; 5 + 3 = 8 и так далее. Леонардо Фибоначчи был своего рода мистиком, азы науки он познавал у арабов, которые верили, что числа обладают магическими свойствами. Он обнаружил, что формула, описывающая отношение соседних членов его последовательности чисел:
1/2(?5-1)
также описывает все существующие в природе спирали.
Если верить книге Нима, ботаники установили, что каждое растение, лепестки или стебли которого образуют спираль, соотносится с числами Фибоначчи. Биологи подтвердили, что раковина наутилуса и вообще все спирали, встречающиеся в морских формах жизни, соответствуют этой последовательности. Астрономы заявили, что соотношения между планетами Солнечной системы и даже форма Млечного Пути могут быть описаны с помощью чисел Фибоначчи.
Но я заметила и еще кое-что, о чем в книге говорилось гораздо позже. Хотя математика не мой конек, но в колледже я специализировалась на музыке. Видите ли, эта маленькая формула не была изобретением Фибоначчи: за две тысячи лет до него ее открыл другой парень по имени Пифагор. Греки называли ее aurio sectio— «золотое сечение».
Проще говоря, золотое сечение — это деление отрезка на две части таким образом, что меньшая часть относится к большей так же, как большая часть относится к длине всего отрезка. Это соотношение использовалось всеми древними цивилизациями в архитектуре, изобразительном искусстве, музыке. Платон и Аристотель считали его мерилом красоты: если в произведении соблюдалось правило золотого сечения, они называли это произведение эстетически совершенным.
Что касается Пифагора, то по части приверженности к мистике Фибоначчи ему в подметки не годился. Греки называли его Пифагором Самосским, потому что в Кротон он приехал с острова Самос, спасаясь от политических распрей. По словам современников, он родился в Тире, городе, основанном древними финикийцами (теперь это территория Ливана). Пифагор за свою жизнь много путешествовал: двадцать один год он прожил в Египте, двенадцать лет — в Месопотамии и наконец в возрасте пятидесяти лет приехал в Кротон. Там Пифагор основал общество мистиков, которое с натяжкой можно назвать философской школой. Его ученики изучали тайны, которые он познал в своих путешествиях. Они касались двух вещей — математики и музыки.
Именно Пифагор обнаружил, что основой европейской музыкальной шкалы является октава, поскольку при колебании струны каждая ее половина издает тот же тон, что и целая струна, но на октаву выше. Частота вибрации струны обратно пропорциональна ее длине. Один из секретов пифагорейцев состоял в том, что квинта (интервал в пять нот диатонической гаммы, золотое сечение октавы), повторенная двенадцать раз в восходящей последовательности, должна была бы дать первоначальный тон, только семью октавами выше, однако вместо этого дает звук на одну восьмую тона выше первоначального. Таким образом, восходящая последовательность тоже образует спираль.
Однако величайшей тайной пифагорейцев была теория, что вся Вселенная состоит из чисел, каждое из которых имеет божественные свойства. Эти магические отношения чисел проявляются в природе повсюду. Пифагор считал, что даже планеты, двигаясь в космической пустоте, издают звуки, которые подчиняются тем же гармониям чисел. «В звучании струн заключена геометрия, — говорил Пифагор, — а в геометрии сфер — музыка».
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
Позиционный анализ
Шахматы — это искусство анализа.
Михаил Ботвинник, советский гроссмейстер, чемпион мира по шахматам
Шахматы — это игра воображения.
Давид Бронштейн, советский гроссмейстер
Wenn ihr’s nicht fuhlt, ihr werdet’s nicht erjagen. (Когда в вас чувства нет, то это труд бесцельный).
Иоганн Вольфганг Гёте. Фауст
Дорога петляла по берегу моря, на каждом повороте открывался захватывающий вид. Подножия скал тонули в тучах брызг, а выше, там, куда не доставали морские волны, камни густо заросли лишайником и мелкими цветущими растениями. Золотистые бутоны ледяника покачивались среди кружевной вязи заостренных листьев, выстилающей скалы поверх соляной корки. Море отливало глубоким зеленым цветом. Цветом глаз Соларина.
Да, пейзаж был прекрасен, но я не могла оценить его красоту по достоинству. Прошлая ночь принесла слишком много загадок, предположения и версии толкались у меня в голове, норовя оттеснить друг дружку. И пока такси несло меня по открытой эстакаде в Алжир, я решила воспользоваться этими минутами, чтобы привести мысли в порядок.
Каждый раз, когда я пыталась сложить два и два, у меня получалось восемь. Восьмерки были повсюду, куда ни посмотри. Сначала на них указала предсказательница, когда намекнула на мой день рождения. Потом Мордехай, Шариф и Соларин дружно принялись твердить, что это, дескать, магический знак. Русский вообще заявил, что на моей ладони не только линии образуют восьмерку, но и присутствует некая загадочная «формула восьми». И с этими словами он растворился в ночи, забыв вернуть ключ от номера и предоставив мне Шарифа в качестве провожатого до отеля.
Шариф, разумеется, очень хотел узнать, кто был этот красавец, который привел меня в кабаре, и почему он так неожиданно исчез. Я расписала ему, как лестно для простой девушки вроде меня, когда ей назначают не одно, а целых два свидания в первый же вечер после прибытия на чужой континент. Больше ничего я объяснять не стала, предоставив Шарифу делать выводы самостоятельно. Он и его головорезы подвезли меня до отеля в военном джипе.
Когда мы добрались до гостиницы, выяснилось, что ключ от комнаты оставлен у портье, а велосипед Соларина исчез из-под моего окна. Поскольку с мыслью хорошенько выспаться все равно можно было попрощаться, я решила посвятить остаток ночи небольшому научному исследованию.
Итак, теперь я знала о существовании некой формулы, и проход коня был тут совершенно ни при чем. Как и предположила Лили, это была формула другого рода, ее не сумел расшифровать даже Соларин. И она была каким-то образом связана с шахматами Монглана.
Ним пытался предупредить меня об этом, не так ли? Он прислал мне книги о математических формулах и играх. Я решила начать с той, которая вызвала жгучий интерес Шарифа, с книги самого Нима — брошюры о числах Фибоначчи. И я принялась штудировать этот занудный труд, К рассвету у меня появилось ощущение, что мое решение себя оправдало, хотя я пока и не могла точно сказать, как именно. Числа Фибоначчи, оказывается, могут использоваться не только в анализе графиков торгов. Вот каким образом они работают.
Фибоначчи предложил последовательность целых чисел, где каждое последующее число начиная с третьего равно сумме двух предыдущих. Начинается этот ряд с двух единиц. Итак, 1 + 1-2; 2 + 1-3; 3 + 2 = 5; 5 + 3 = 8 и так далее. Леонардо Фибоначчи был своего рода мистиком, азы науки он познавал у арабов, которые верили, что числа обладают магическими свойствами. Он обнаружил, что формула, описывающая отношение соседних членов его последовательности чисел:
1/2(?5-1)
также описывает все существующие в природе спирали.
Если верить книге Нима, ботаники установили, что каждое растение, лепестки или стебли которого образуют спираль, соотносится с числами Фибоначчи. Биологи подтвердили, что раковина наутилуса и вообще все спирали, встречающиеся в морских формах жизни, соответствуют этой последовательности. Астрономы заявили, что соотношения между планетами Солнечной системы и даже форма Млечного Пути могут быть описаны с помощью чисел Фибоначчи.
Но я заметила и еще кое-что, о чем в книге говорилось гораздо позже. Хотя математика не мой конек, но в колледже я специализировалась на музыке. Видите ли, эта маленькая формула не была изобретением Фибоначчи: за две тысячи лет до него ее открыл другой парень по имени Пифагор. Греки называли ее aurio sectio— «золотое сечение».
Проще говоря, золотое сечение — это деление отрезка на две части таким образом, что меньшая часть относится к большей так же, как большая часть относится к длине всего отрезка. Это соотношение использовалось всеми древними цивилизациями в архитектуре, изобразительном искусстве, музыке. Платон и Аристотель считали его мерилом красоты: если в произведении соблюдалось правило золотого сечения, они называли это произведение эстетически совершенным.
Что касается Пифагора, то по части приверженности к мистике Фибоначчи ему в подметки не годился. Греки называли его Пифагором Самосским, потому что в Кротон он приехал с острова Самос, спасаясь от политических распрей. По словам современников, он родился в Тире, городе, основанном древними финикийцами (теперь это территория Ливана). Пифагор за свою жизнь много путешествовал: двадцать один год он прожил в Египте, двенадцать лет — в Месопотамии и наконец в возрасте пятидесяти лет приехал в Кротон. Там Пифагор основал общество мистиков, которое с натяжкой можно назвать философской школой. Его ученики изучали тайны, которые он познал в своих путешествиях. Они касались двух вещей — математики и музыки.
Именно Пифагор обнаружил, что основой европейской музыкальной шкалы является октава, поскольку при колебании струны каждая ее половина издает тот же тон, что и целая струна, но на октаву выше. Частота вибрации струны обратно пропорциональна ее длине. Один из секретов пифагорейцев состоял в том, что квинта (интервал в пять нот диатонической гаммы, золотое сечение октавы), повторенная двенадцать раз в восходящей последовательности, должна была бы дать первоначальный тон, только семью октавами выше, однако вместо этого дает звук на одну восьмую тона выше первоначального. Таким образом, восходящая последовательность тоже образует спираль.
Однако величайшей тайной пифагорейцев была теория, что вся Вселенная состоит из чисел, каждое из которых имеет божественные свойства. Эти магические отношения чисел проявляются в природе повсюду. Пифагор считал, что даже планеты, двигаясь в космической пустоте, издают звуки, которые подчиняются тем же гармониям чисел. «В звучании струн заключена геометрия, — говорил Пифагор, — а в геометрии сфер — музыка».
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188