В силу этого сила раздражения
должна быть строго дозирована.
Организмы I-го поколения, несмотря на их относительную примитивность, имели
уже довольно надежную подсистему алгоритмозаписи, в основе которой лежит
биохимическая запись генетического кодирования ДНК. В ней собирается
информация практически от всех клеток, входящих в организм. По мере усложнения
системной организации растений повышалась надежность и подсистемы
алгоритмозаписи, обеспечивавшей кодирование развертывания структуры фн. ячеек
всех подсистем организма, соотнесенное с пространственно-временными
интервалами. Вначале подсистему алгоритмозаписи имел практически каждый орган
растения. Так до сих пор существуют растения, у которых при культивировании
лишь одного органа происходит развертывание всех остальных. К ним можно
отнести лесной ландыш (корневище), тополь (часть стебля) и т.д. Однако, в
конечном итоге, наиболее надежной оказалась система записи алгоритмов,
производимая в особом, специально для этого предназначенном органе растения -
его семенах. Одно из главных преимуществ такой записи является возможность ее
реализации (алгоритмочтения) с большим интервалом как в пространстве, так и во
времени.
И действительно, семена можно перенести на многие километры от материнского
растения и посадить, то есть дать начало развития нового организма растений,
через несколько лет после отделения семени от родителя. Все это отвечало
требованиям Развития Материи по ординатам качества-времени-пространства. Мы не
будем останавливаться на самом механизме алгоритмической записи развертывания
структур подсистем всего организма растения в зародыше семян, однако отметим,
что запись эта настолько полная, что включает в себя количественное и
качественное отличие всех входящих в структуру данного организма фн. ячеек,
время их развертывания и период функционирования, а также алгоритмические
особенности каждой группы функционально обособленных ячеек. Поэтому как только
семя попадает в соответствующую фн. ячейку биогеоценоза, тут же включаются его
биочасы и начинается декодирование кропотливо составленной генозаписи
зародыша, являющееся первой фазой развертывания структуры организма очередного
растения.
Семена, как известно, помимо генетической записи зародыша имеют и небольшой
запас (сухой паек) тщательно отобранных элементов, необходимых для
использования в качестве фщ. единиц на первых порах развертывания структуры
растения. Позднее, по мере развития их различных подсистем, организмы растений
стали более запасливыми и помимо накопления строго обязательного запаса
необходимых элементов в семени, они начали также аккумулировать значительное
количество элементов в другой своей, более обширной аккумулятивной подсистеме
- плодах. При созревании плодов основная масса их фн. ячеек, имеющих главным
образом аккумулятивную функцию, заполняется всеми элементами, необходимыми для
нормального развертывания из семян первых подсистем растения. Это заполнение,
как и все трансформации в растениях, происходит не хаотически, а повинуясь
строгому регламентированию соответствующими алгоритмами, согласно которым
строго определенные молекулярные соединения в виде фщ. единиц заполняют
отведенные для них фн. ячейки, где они с помощью энергии Солнца полимеризуются
в более сложные соединения, что обеспечивает им более продолжительный период
существования. В последующем, после завершения созревания плода и семян, то
есть когда все фн. ячейки их структур наполнятся соответствующими фщ.
единицами, плод вместе с семенами опадает на верхний слой почвы, где
происходит деполимеризация его фщ. единиц, в результате чего создается среда
питательных элементов для находящихся здесь же семян. Поэтому, как только из
семени начинается развертывание структуры нового растения, сохранившиеся
элементы деполимеризированного плода служат основным источником,
обеспечивающим заполнение его фн. ячеек соответствующими фщ. единицами.
В процессе своего формирования каждое семя проходит стадию оплодотворения,
то есть момент соединения двух системообразующих структур - пыльцы и
яйцеклетки. Это соединение служит целям улучшения генотипа растений
посредством распространения более совершенных структур фн. ячеек подсистем,
образовавшихся при мутации генов. Совершенствование этого процесса шло по пути
от обоеполых растений через однодомные, то есть у которых есть и тычиночные, и
пестичные цветки, до двудомных, где тычиночные и пестичные цветки расположены
на разных растениях. Таким образом, уже у организмов I-го поколения
сформировались особи разных полов. Появление семян от разнополых растений
обеспечивает наличие генозаписи как минимум от двух родительских системных
образований, что способствует постоянному совершенствованию структуры фн.
ячеек данного вида растения и соответственной оптимализации совокупности их
алгоритмов. Генозаписью алгоритмов построения и функционирования фщ. единиц
всех подсистем растения, произведенной в ДНК клеток зародыша семян, а также
обеспечением минимального запаса необходимых при развертывании структуры
организма элементов, сосредоточенного в плодах, практически заканчивается фн.
деятельность большинства растений - организмов I-го поколения.
Отфункционировав, структуры их подсистем распадаются, а фщ. единицы,
заполнявшие ранее их фн. ячейки, деполимеризуясь, покрывают верхний слой
почвы, образуя и поддерживая таким образом ее гумусовый слой. В дальнейшем
разрозненные элементы гумусового слоя могут войти в состав фщ. единиц
структуры нового растения с тем, чтобы, отфункционировав там, вновь вернуться
в гумусовый слой. Этот процесс бесконечен и составляет основу биогеоценоза.
Как ни велико множество разновидностей организмов I-го поколения,
функциональная нагрузка их в целом одинакова, а разница состоит лишь в
структурной организации их подсистем, приспособленных под те или иные
особенности биогеоценоза, в котором они территориально размещены и фщ.
единицами которого они сами являются. Поэтому, исчерпав весь набор возможных
функциональных приращений () в структурах организмов I-го поколения, Развитие
Материи перешло в новую область - к конструированию структур с новыми
функциями у организмов с более высокой системной организацией, которые
объединяются в следующую группу - организмы II-го поколения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
должна быть строго дозирована.
Организмы I-го поколения, несмотря на их относительную примитивность, имели
уже довольно надежную подсистему алгоритмозаписи, в основе которой лежит
биохимическая запись генетического кодирования ДНК. В ней собирается
информация практически от всех клеток, входящих в организм. По мере усложнения
системной организации растений повышалась надежность и подсистемы
алгоритмозаписи, обеспечивавшей кодирование развертывания структуры фн. ячеек
всех подсистем организма, соотнесенное с пространственно-временными
интервалами. Вначале подсистему алгоритмозаписи имел практически каждый орган
растения. Так до сих пор существуют растения, у которых при культивировании
лишь одного органа происходит развертывание всех остальных. К ним можно
отнести лесной ландыш (корневище), тополь (часть стебля) и т.д. Однако, в
конечном итоге, наиболее надежной оказалась система записи алгоритмов,
производимая в особом, специально для этого предназначенном органе растения -
его семенах. Одно из главных преимуществ такой записи является возможность ее
реализации (алгоритмочтения) с большим интервалом как в пространстве, так и во
времени.
И действительно, семена можно перенести на многие километры от материнского
растения и посадить, то есть дать начало развития нового организма растений,
через несколько лет после отделения семени от родителя. Все это отвечало
требованиям Развития Материи по ординатам качества-времени-пространства. Мы не
будем останавливаться на самом механизме алгоритмической записи развертывания
структур подсистем всего организма растения в зародыше семян, однако отметим,
что запись эта настолько полная, что включает в себя количественное и
качественное отличие всех входящих в структуру данного организма фн. ячеек,
время их развертывания и период функционирования, а также алгоритмические
особенности каждой группы функционально обособленных ячеек. Поэтому как только
семя попадает в соответствующую фн. ячейку биогеоценоза, тут же включаются его
биочасы и начинается декодирование кропотливо составленной генозаписи
зародыша, являющееся первой фазой развертывания структуры организма очередного
растения.
Семена, как известно, помимо генетической записи зародыша имеют и небольшой
запас (сухой паек) тщательно отобранных элементов, необходимых для
использования в качестве фщ. единиц на первых порах развертывания структуры
растения. Позднее, по мере развития их различных подсистем, организмы растений
стали более запасливыми и помимо накопления строго обязательного запаса
необходимых элементов в семени, они начали также аккумулировать значительное
количество элементов в другой своей, более обширной аккумулятивной подсистеме
- плодах. При созревании плодов основная масса их фн. ячеек, имеющих главным
образом аккумулятивную функцию, заполняется всеми элементами, необходимыми для
нормального развертывания из семян первых подсистем растения. Это заполнение,
как и все трансформации в растениях, происходит не хаотически, а повинуясь
строгому регламентированию соответствующими алгоритмами, согласно которым
строго определенные молекулярные соединения в виде фщ. единиц заполняют
отведенные для них фн. ячейки, где они с помощью энергии Солнца полимеризуются
в более сложные соединения, что обеспечивает им более продолжительный период
существования. В последующем, после завершения созревания плода и семян, то
есть когда все фн. ячейки их структур наполнятся соответствующими фщ.
единицами, плод вместе с семенами опадает на верхний слой почвы, где
происходит деполимеризация его фщ. единиц, в результате чего создается среда
питательных элементов для находящихся здесь же семян. Поэтому, как только из
семени начинается развертывание структуры нового растения, сохранившиеся
элементы деполимеризированного плода служат основным источником,
обеспечивающим заполнение его фн. ячеек соответствующими фщ. единицами.
В процессе своего формирования каждое семя проходит стадию оплодотворения,
то есть момент соединения двух системообразующих структур - пыльцы и
яйцеклетки. Это соединение служит целям улучшения генотипа растений
посредством распространения более совершенных структур фн. ячеек подсистем,
образовавшихся при мутации генов. Совершенствование этого процесса шло по пути
от обоеполых растений через однодомные, то есть у которых есть и тычиночные, и
пестичные цветки, до двудомных, где тычиночные и пестичные цветки расположены
на разных растениях. Таким образом, уже у организмов I-го поколения
сформировались особи разных полов. Появление семян от разнополых растений
обеспечивает наличие генозаписи как минимум от двух родительских системных
образований, что способствует постоянному совершенствованию структуры фн.
ячеек данного вида растения и соответственной оптимализации совокупности их
алгоритмов. Генозаписью алгоритмов построения и функционирования фщ. единиц
всех подсистем растения, произведенной в ДНК клеток зародыша семян, а также
обеспечением минимального запаса необходимых при развертывании структуры
организма элементов, сосредоточенного в плодах, практически заканчивается фн.
деятельность большинства растений - организмов I-го поколения.
Отфункционировав, структуры их подсистем распадаются, а фщ. единицы,
заполнявшие ранее их фн. ячейки, деполимеризуясь, покрывают верхний слой
почвы, образуя и поддерживая таким образом ее гумусовый слой. В дальнейшем
разрозненные элементы гумусового слоя могут войти в состав фщ. единиц
структуры нового растения с тем, чтобы, отфункционировав там, вновь вернуться
в гумусовый слой. Этот процесс бесконечен и составляет основу биогеоценоза.
Как ни велико множество разновидностей организмов I-го поколения,
функциональная нагрузка их в целом одинакова, а разница состоит лишь в
структурной организации их подсистем, приспособленных под те или иные
особенности биогеоценоза, в котором они территориально размещены и фщ.
единицами которого они сами являются. Поэтому, исчерпав весь набор возможных
функциональных приращений () в структурах организмов I-го поколения, Развитие
Материи перешло в новую область - к конструированию структур с новыми
функциями у организмов с более высокой системной организацией, которые
объединяются в следующую группу - организмы II-го поколения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70