Повторение опыта Майкельсона Морлеем и
Миллером в 1904 году явилось первым надежным доказательством невозможности
обнаружить поступательное движение Земли с помощью оптических методов, а
решающая работа Эйнштейна появилась менее чем два года спустя. С другой
стороны, опыт Морлея и Миллера и работа Эйнштейна явились все-таки, пожалуй,
лишь последними фазами развития, которое началось гораздо ранее и которое,
по-видимому, можно связать с проблемой "электродинамики движущихся сред".
Электродинамика движущихся сред оказалась важным разделом физики и
техники с того времени, как начали строить электромоторы. Серьезная
трудность выявилась в этой области только тогда, когда Максвелл вскрыл
электромагнитную природу световых волн. Эти волны одним существенным
свойством отличаются от других, уже известных ранее волн, например от
звуковых волн. Они могут распространяться в пустом пространстве. Если звонок
заставить звучать в сосуде, из которого откачан воздух, то звук не достигает
пространства вне сосуда. Свет же свободно проходит сквозь безвоздушное
пространство. Поэтому предположили, что световые волны можно рассматривать
как упругие волны в очень легкой субстанции, называемой эфиром, которую
нельзя ни видеть, ни ощущать, но которая заполняет как безвоздушное
пространство, так и пространство, занятое другим веществом, например
воздухом или стеклом. Мысль о том, что электромагнитные волны обладают своей
собственной реальностью, независимой ни от каких тел, в то время еще не
приходила физикам в голову. Так как это гипотетическое вещество -- эфир --
могло проникать во все другие тела, то встал вопрос: что происходит, если
тело приведено в движение? Принимает ли эфир участие в этом движении, и если
да, то как распространяется световая волна в этом движущемся эфире?
Эксперименты, которые дают ответ на этот вопрос, трудны по следующей
причине: скорости движущихся тел обычно чрезвычайно малы по сравнению со
скоростью света. Поэтому движение этих тел может вызвать только очень
незначительные эффекты, приблизительно пропорциональные отношению скорости
тела к скорости света или более высокой степени этого отношения.
Разнообразные эксперименты Вильсона, Роуланда, Рентгена, Эйхенвальда и Физо
позволили измерить такие эффекты с точностью, соответствующей первой степени
этого отношения. Электронная теория, развитая Лоренцом в 1895 году, дала
удовлетворительное описание этих эффектов "первого порядка". Но эксперимент
Майкельсона, Морлея и Миллера создал новую ситуацию.
Этот эксперимент следует обсудить подробно. Чтобы получить большие
эффекты, а тем самым и более точные результаты, казалось целесообразным
экспериментировать с телами, двужущимися очень быстро. Земля движется вокруг
Солнца со скоростью около 30 км/сек. Если эфир покоится относительно Солнца
и не увлекается Землей, то это быстрое движение эфира относительно Земли с
необходимостью должно проявляться в изменении скорости распространения света
на Земле. Тогда должны получаться различные значения скорости света, смотря
по тому, как распространяется свет -- в направлении движения Земли или
перпендикулярно к этому направлению. Даже если эфир увлекается Землей
частично, должен еще получаться некоторый эффект, так как имел бы место, так
сказать, эфирный ветер, и этот эффект должен тогда зависеть, вероятно, от
высоты над уровнем моря, на которой проводится эксперимент. Вычисление
эффекта, который следует ожидать, показывает, что он в данном случае должен
быть очень малым, так как оказывается пропорциональным квадрату отношения
скорости Земли к скорости света. Поэтому необходимо поставить точные
эксперименты по интерференции двух световых пучков, один из которых
направлен параллельно, а другой -- перпендикулярно к направлению движения
Земли. Первый эксперимент такого рода, выполненный Майкельсоном в 1881 году,
был недостаточно точен. Но и последующие повторные эксперименты не
обнаружили ни малейших следов ожидаемого эффекта. Такого рода окончательным
доказательством того, что эффект ожидаемого порядка величины не имеет места,
являются в особенности эксперименты Морлея и Миллера 1904 года.
Их результат казался сначала непонятным, но он имеет отношение и к
другому вопросу, незадолго до этого уже обсуждавшемуся физиками. В
ньютоновской механике справедлив определенный принцип относительности,
который можно характеризовать следующими словами: если в определенной
системе отсчета законы ньютоновской механики выполняются для механического
движения тела, в таком случае это имеет место и в любой другой системе
отсчета, движущейся относительно первой системы равномерно и прямолинейно.
Равномерное и прямолинейное движение не вызывает, таким образом, никаких
механических эффектов в этой системе, и поэтому эти эффекты не могут
служить средством обнаружения такого движения.
Подобного рода принцип относительности, как казалось физикам, не мог
быть справедлив в оптике и электродинамике. Ибо если первая система покоится
относительно эфира, то движущаяся система, напротив, не находится в
состоянии покоя, и отсюда следует, что движение этой второй системы
относительно эфира можно наблюдать благодаря эффектам того рода, которые
были исследованы Майкельсоном. Отрицательный результат опыта Морлея и
Миллера 1904 года позволял поэтому снова воскресить идею о том, что принцип
относительности такого рода все-таки, вероятно, мог быть также справедлив в
электродинамике, как и ранее в ньютоновской механике.
С другой стороны, имелся старый опыт Физо 1851 года, который, казалось,
непосредственно противоречил этому принципу относительности. Физо исследовал
скорость света в движущейся жидкости. Если бы принцип относительности был
справедлив, то суммарная скорость света в движущейся жидкости должна была бы
быть равной сумме скорости жидкости и скорости света в покоящейся жидкости.
Однако это было не так. Опыт Физо показал, что суммарная скорость была
несколько меньше, чем указанная сумма.
Несмотря на это, отрицательный результат всех новейших попыток
обнаружить движение относительно эфира побуждал физиков и математиков искать
такое математическое толкование этих опытов, которое могло бы согласовать
друг с другом волновое уравнение для распространения света и принцип
относительности. Поэтому Лоренц предложил в 1904 году математическое
преобразование, которое удовлетворяло этому требованию9.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
Миллером в 1904 году явилось первым надежным доказательством невозможности
обнаружить поступательное движение Земли с помощью оптических методов, а
решающая работа Эйнштейна появилась менее чем два года спустя. С другой
стороны, опыт Морлея и Миллера и работа Эйнштейна явились все-таки, пожалуй,
лишь последними фазами развития, которое началось гораздо ранее и которое,
по-видимому, можно связать с проблемой "электродинамики движущихся сред".
Электродинамика движущихся сред оказалась важным разделом физики и
техники с того времени, как начали строить электромоторы. Серьезная
трудность выявилась в этой области только тогда, когда Максвелл вскрыл
электромагнитную природу световых волн. Эти волны одним существенным
свойством отличаются от других, уже известных ранее волн, например от
звуковых волн. Они могут распространяться в пустом пространстве. Если звонок
заставить звучать в сосуде, из которого откачан воздух, то звук не достигает
пространства вне сосуда. Свет же свободно проходит сквозь безвоздушное
пространство. Поэтому предположили, что световые волны можно рассматривать
как упругие волны в очень легкой субстанции, называемой эфиром, которую
нельзя ни видеть, ни ощущать, но которая заполняет как безвоздушное
пространство, так и пространство, занятое другим веществом, например
воздухом или стеклом. Мысль о том, что электромагнитные волны обладают своей
собственной реальностью, независимой ни от каких тел, в то время еще не
приходила физикам в голову. Так как это гипотетическое вещество -- эфир --
могло проникать во все другие тела, то встал вопрос: что происходит, если
тело приведено в движение? Принимает ли эфир участие в этом движении, и если
да, то как распространяется световая волна в этом движущемся эфире?
Эксперименты, которые дают ответ на этот вопрос, трудны по следующей
причине: скорости движущихся тел обычно чрезвычайно малы по сравнению со
скоростью света. Поэтому движение этих тел может вызвать только очень
незначительные эффекты, приблизительно пропорциональные отношению скорости
тела к скорости света или более высокой степени этого отношения.
Разнообразные эксперименты Вильсона, Роуланда, Рентгена, Эйхенвальда и Физо
позволили измерить такие эффекты с точностью, соответствующей первой степени
этого отношения. Электронная теория, развитая Лоренцом в 1895 году, дала
удовлетворительное описание этих эффектов "первого порядка". Но эксперимент
Майкельсона, Морлея и Миллера создал новую ситуацию.
Этот эксперимент следует обсудить подробно. Чтобы получить большие
эффекты, а тем самым и более точные результаты, казалось целесообразным
экспериментировать с телами, двужущимися очень быстро. Земля движется вокруг
Солнца со скоростью около 30 км/сек. Если эфир покоится относительно Солнца
и не увлекается Землей, то это быстрое движение эфира относительно Земли с
необходимостью должно проявляться в изменении скорости распространения света
на Земле. Тогда должны получаться различные значения скорости света, смотря
по тому, как распространяется свет -- в направлении движения Земли или
перпендикулярно к этому направлению. Даже если эфир увлекается Землей
частично, должен еще получаться некоторый эффект, так как имел бы место, так
сказать, эфирный ветер, и этот эффект должен тогда зависеть, вероятно, от
высоты над уровнем моря, на которой проводится эксперимент. Вычисление
эффекта, который следует ожидать, показывает, что он в данном случае должен
быть очень малым, так как оказывается пропорциональным квадрату отношения
скорости Земли к скорости света. Поэтому необходимо поставить точные
эксперименты по интерференции двух световых пучков, один из которых
направлен параллельно, а другой -- перпендикулярно к направлению движения
Земли. Первый эксперимент такого рода, выполненный Майкельсоном в 1881 году,
был недостаточно точен. Но и последующие повторные эксперименты не
обнаружили ни малейших следов ожидаемого эффекта. Такого рода окончательным
доказательством того, что эффект ожидаемого порядка величины не имеет места,
являются в особенности эксперименты Морлея и Миллера 1904 года.
Их результат казался сначала непонятным, но он имеет отношение и к
другому вопросу, незадолго до этого уже обсуждавшемуся физиками. В
ньютоновской механике справедлив определенный принцип относительности,
который можно характеризовать следующими словами: если в определенной
системе отсчета законы ньютоновской механики выполняются для механического
движения тела, в таком случае это имеет место и в любой другой системе
отсчета, движущейся относительно первой системы равномерно и прямолинейно.
Равномерное и прямолинейное движение не вызывает, таким образом, никаких
механических эффектов в этой системе, и поэтому эти эффекты не могут
служить средством обнаружения такого движения.
Подобного рода принцип относительности, как казалось физикам, не мог
быть справедлив в оптике и электродинамике. Ибо если первая система покоится
относительно эфира, то движущаяся система, напротив, не находится в
состоянии покоя, и отсюда следует, что движение этой второй системы
относительно эфира можно наблюдать благодаря эффектам того рода, которые
были исследованы Майкельсоном. Отрицательный результат опыта Морлея и
Миллера 1904 года позволял поэтому снова воскресить идею о том, что принцип
относительности такого рода все-таки, вероятно, мог быть также справедлив в
электродинамике, как и ранее в ньютоновской механике.
С другой стороны, имелся старый опыт Физо 1851 года, который, казалось,
непосредственно противоречил этому принципу относительности. Физо исследовал
скорость света в движущейся жидкости. Если бы принцип относительности был
справедлив, то суммарная скорость света в движущейся жидкости должна была бы
быть равной сумме скорости жидкости и скорости света в покоящейся жидкости.
Однако это было не так. Опыт Физо показал, что суммарная скорость была
несколько меньше, чем указанная сумма.
Несмотря на это, отрицательный результат всех новейших попыток
обнаружить движение относительно эфира побуждал физиков и математиков искать
такое математическое толкование этих опытов, которое могло бы согласовать
друг с другом волновое уравнение для распространения света и принцип
относительности. Поэтому Лоренц предложил в 1904 году математическое
преобразование, которое удовлетворяло этому требованию9.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56