ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Впрочем, тогда еще никакие старческие хвори нам не грозили и после купания в Адриатическом море, 200 ступенек вверх нам еще не казались такими трудными, а были лишь хорошим предверием к утренрнему завтраку.
Нас неизменно сопровождала большая овчарка хозяина нашего дома. Ее звали Яшин по имени знаменитого вратаря сборной команды Советского Союза. Это была симпатичная и добрейшая псина. Впрочем собаки наследуют характер своих хозяев, а наш хозяин, отставной моряк был очень похож на своего грозного стража. А имя этот страж получил не с проста. Каждое утро, когда кто либо выходил на веранду, Яшин приносил камушек, отступал метра на два или на три, принимал позу вратаря и требовал, чтобы этот камушек пнули ногой. Как правило, он камушек умудрялся поймать и тогда удовлетворенный отпускал свою жертву. Если же он камушек пропускал, то начинал жалобно скулить и приносил новый камушек.
Вот такой компанией мы и жили - нас пятеро, да и Яшин.
А по вечерам мы сидели на веранде, прямо над морем, попивали легкое винцо и говорили о ... математике. Вот когда я по настоящему оценил своих новых друзей. Мы были не только ровнестниками, но и почти по всем вопросам единомышленники.
Мои взгляды на математику, на ее место в системе наук и человеческой жизни, на науку вообще складывалось и под влиянием моих учителей, среди которых я выделяю Д.А.Вентцеля и И.Е. Тамма и тех титанов, с которыми меня сводила жизнь - М.А.Лаврентьева, Н.Н.Боголюбова, С.Л.Соболева. Я даже не знаю, кто они были - математиками, физиками, инженерами. Большое значение имела для меня и моя инженерная деятельность, связанная с решением конкретных задач аэрокосмического комплекса. И у меня возникло двойственое отношение к математике. Я преклонялся перед математикой и теми, которых я считал великими математиками. И первым среди них с считал Пуанкаре. Но однажды я возненавидел математический снобизм, который мне прививался в университете. Вот почему, прежде всего, я преодолел представление о самодостаточности математики, столь характерное для московской математической школы. Как и всякая наука, математика, может быть и прекраснейшая из наук, все-таки чему-то служит.
Я безусловно разделял ту точку зрения, что любая теория в чем-то ущербна, если она не имеет математического оформления. И всегда стремился переходить от вербального к математическому описанию. И, в тоже время, я понимал шаткость такой позиции, поскольку, все исходные постулаты необходимые для математической формализации очень условны. Да и само описание на языке математики далеко не всегда удается получить. Вот почему ничего нельзя абсолютизировать, в том числе и понятие математической строгости, которое после теорем Гедделя даже в чисто математическом плане, превратилось в понятие весьма относительное.
Одним словом во всем нужно чувство меры и... юмора. И в отношении к математике, и к свей деятельности и самому себе, в первую очередь! Этот принцип мне преподал Д.А.Вентцель, иронически выслушивавший мои сентенции усвоенные от другого моего учителя - Д.Е.Меньшова, дипломником которого на кафедре фукциональнорго анализа я был в 1940-ом году. И такой критицизм, такое понимание относительной ценности того, что каждый из нас способен придумать и понять, отнюдь не уменьшает энтузиазма в своей исследовательской деятельности. Просто он все ставит на свои места. И меняя шкалу ценностей, переносит на место абсолютного - интерпретацию! Но это утверждение, которое всегда руководит моей деятельностью я связываю уже с именем Нильса Бора.
И вместе с этим - еще один принцип:"мамы разные нужны, мамы разные важны". Человек по-настоящему хорошо может делать то, что ему интересно. И только хорошие дела складываются в человеческую копилку. А почему одному интересно одно, а другому другое, понять очень непросто - такова природа человека.
Именно вот с таких позиций я и мои новые друзья обсуждали вечерами и свои лекции и лекции других профессоров, которые мы усердно слушали. Разговор велся на странной каше русского, французского и английского: Заде и Беллман говорили между собой по английски, я с Беллманом - по французски, а Заде со мной - по русски. Но рядом всегда была Фанни - она говорила на всех мыслимых и немыслимых языках и обычно нас выручала в трудных ситуациях.
Оба мои новых знакомых были людьми высокоодаренными, но очень разной судьбы. Заде связал себя сразу с инженерной деятельностью. Он никогда не претендовал на то, чтобы считаться математиком, хотя прекрасно владел и теорией вероятностей и алгебраическими методами. Он очень быстро получил признание в теории управления техническими системами и только уже будучи весьма титулованным стал заниматься более абстрактными конструкциями. В тот год он начинал создавать свою теорию, которая получила название нечетких множеств. Я ценил эти работы и позднее даже согласился войти в состав редколлегии соответствующего международного журнала. Но мне казалось, что наиболее интересное развитие его методы найдут в теории фильтрации случайного процесса нелинейным оператором. Я даже пробовал начать соответствующее исследование, однако какого либо успеха не добился.
У Беллмана судьба была совершенно иной. Он считал себя, прежде всего, математиком и искал признания у математиков. Но, увы, американские математики ему в этом отказывали и не считали его математиком: уж очень он не укладывался в привычные стандарты. Выбрал себе для работы Rand Corporation и только гораздо позднее стал преподавать в Южнокалифорнийском Университете. Придумывал методы и начинал их применять без особого обоснования. Да и его чисто математические теоремы были доказаны не очень аккуратно с точки зрения высокой математики. Книги писал быстро, порой не доводя до кондиции. Но книги его раскупались, переводились на многие языки и читались, правда не математиками, а инженерами, физиками, экономистами. В Советском Союзе он был гораздо популярнее, чем в США. Особую популярность в нашей стране принесло создание им динамического программирования.
История динамического программирования совсем не проста и я имел к ней определенное отношение.
В конце 50-х годов я придумал способ решения задачи выбора траектории управляемой ракеты, которая обходит некоторую запретную зону так, чтобы с данным запасом топлива перенести максимальный груз. Идея вычислительного процесса мне самому очень понравилась и я ей гордился. Однако В.Г.Срагович, после моего доклада на семинаре нашего отдела мне сказал, что похожую задачу решал молодой киевский математик В.С.Михалевич. И его решение уже опубликовано. Я поехал в Киев и обнаружил, что это действительно так. Правда, он решал задачу профилирования дороги и у него не было дифференциальных уравнений, но идея численной реализации была одна и та же.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111