ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


У меня было два пути. Первый - возвращаться в "чистую" инженерию. Второй - искать новые приложения своим силам а Академии, то есть новые научные проблемы.
Первый был более простым - в промышленности у меня была хорошая репутация. Кроме того, я получил весьма лестные предложения и от Челомея и от Янгеля, стать их заместителем по теоретической проблематике. Однажды я даже дал свое согласие. Правда это было в состоянии сильного подпития.
Янгель в Днепропетровске, в самом городе имел загородную усадьбу - дом окруженный довольно большим лесом. Не парком, а куском леса - место великолепное и рядом со знаменитым Южным КБ. И вот однажды ранней осенью, которая восхитительна в Новороссии, я был его гостем. Цель приглашения - мой переезд в Днепропетровск. И вот за обильным возлиянием - а у Янгеля все было богатырским и ракеты и возлеяния, я дал свое согласие.
Но на утро после тяжелого похмелья, после того, как я просидел с группой его ведущих инженеров, стараясь вникнуть в суть задач, я понял, что уже не могу расстаться с той свободой мысли, которая была у меня в Академии. Я отказался, понимая сколь многого я лишаюсь и избрал второй путь.
Келдыш отнесся весьма неодобрительно к моему отрицательному решению. Оказалось, что мое приглашение в Днепропетровск было его инициативой.
У меня никогда не было с М.В.Келдышем каких либо особо добрых отношений, но он несколько раз пытался поднять меня на высокие административные ступеньки. И каждый раз я отказывался.
ИССЛЕДОВАНИЕ ОПЕРАЦИЙ - ГЕРМЕЙЕР, БЕЛЛМАН, ЗАДЕ
С начала 60-х годов в Советском Союзе - Москве, Ленинграде, Киеве, стали довольно интенсивно заниматься методами оптимизации. Это была своеобразная страница жизни довольно большого коллектива советских ученых, - математиков, инженеров, экономистов, связанная со многими иллюзиями и наполненная разочарованиями. Отыскание оптимальных решений всегда занимало в метематике весьма значительное место. Тем более, что довольно много инженереых задач сводились к проблемам оптимизации. С появлением электронных вычислительных машин в этом направлении открылись новые перспективы. И многим, в том числе и автору этих размышлений, казалось, что работы в области оптимизации, теории оптимального управления, прежде всего, откроют новую страницу в истории государства и не останутся чисто математическими упражнениями. Я не думаю, что это была дань марксизму, поскольку и на Западе увлечение идеями оптимизации в то время было повсеместным.
Традиционно, со времен великого Эйлера, физика и механика, а затем и практика машиностроения были основными "поставщиками" вариационных задач. Однако в конце 50-х годов новое поле деятельности было открыто не традиционными интересами чистой математики и рутинной инженерной практикой, а той же ракетной техникой, о которой я уже столько говорил в этой книге. Вывод на орбиту некоторого груза требует огромных затрат энергии. Поэтому становится весьма актуальной проблема выбора такой траектории стартового участка космической ракеты, при движении вдоль которой, с той же затратой топлива, можно было бы вывести на орбиту лишний килограмм полезного груза. Первый, который понял суть этой проблемы был Д.Е.Охоцимский. Еще в 46-ом, году, будучи студентом, он опубликовал работу ей посвященную.
Оказалось, что задачи выбора оптимальной траектории выходят за рамки классического анализа (того вариационного исчисления, которое было создано Эйлером и Лагранжем) и требуют разработки новых математических подходов. И он уже содержался в знаменитой статье Охоцимского. Но решающий шаг, увы, сделал не он. А о статье Охоцимского помнят только отдельные специалисты.
Дело в том, что лет через пять после этой работы, Л.С.Понтрягин опубликовал свой принцип максимума. Им была предложена чрезвычайно простая и элегантная конструкция, позволяющая сводить эти нестандартные задачи анализа к краевым задачам для обыкновенных дифференциальных уравнений - задачам трудным, но все же решаемым классическими методами численного анализа. Но, по моему глубокому убеждению, решающий шаг все таки был сделан Охоцимским - именно он впервые показал, пусть на примере, как надо решать такие задачи. Для этого он использовал, так называемые, игольчатые вариации и объяснил некоторые особености оптимальных траекторий. Впрочем, игольчатые вариации придумал еще Лежандр в начале XIX века, но кто помнит о таких вещах?
Так или иначе, заключительное слово было сказано Понтрягиным. И это - "абсолютная истина"! Мне всегда было жаль, что "понтрягинцы" не ссылались на основополагающую работу студента дипломника мехмата МГУ, каким был в ту пору Дмитрий Евгениевич Охоцимский. Впрочем таков стиль наших математиков - не замечать, всего того, что сделано не ими. Пантрягицев - особенно.
Мне всегда казалось, что самое главное в науке понять основную сущность, основную идею, дать ее рельефную интерпретацию. Строгое доказательство, возможность его предельного обобщения также необходимы - это закрепление позиций знания, но истинное развитие науки определяют интерпретации, они несут нечто существенно более важное, чем строгое доказательство то понимание, которое необходимо для продуцировния новых идей.
Я помню, например, как в начале 50-х годов Андрей Васильевич Бицадзе дал несколько замечательных примеров иллюстрирующих свойство сильной эллиптичности. Однако позднее в сознании математиков эти результаты оказались связанными с именем профессора Вишика, который, кажется, в своей докторской диссертации построил общую теорию таких систем. Как ни важна была работа Вишика, но само открытие свойства сильной эллиптичности, интепретация его особенностей были, прежде всего, достижением Бицадзе, его вкладом в математику. Не чисто спортивный результат, не техническое преодоление трудностей, что традиционно особенно цениться математиками, а понимание "души" проблемы вот что меня всегда привлекало в первую очередь. Вот почему я так ценю работу Охоцимского. Почему и сам ушел из чистой математики.
По этой же причине, когда в начале 60-х годов я начал читать на Физтехе курс методов оптимизации, я решил пересмотреть все истоки принципа максимума и постараться проделать до конца тот путь, на который вступил Охоцимский. В своем курсе я не стремился строить и излагать какую либо строгою теорию. К тому времени, с точки зрения матаматики, все уже было давно понято и все основные результаты получены. Но мне хотелось дать студентам такую интерпретацию, которая позволила бы увидеть сколь по существу прост этот принцип, как он естественным образом связан с классическим математическим анализом, его идеями и что принцип максимума выводится практически традиционным образом, опираясь лишь на идеи Лагранжа и Лежандра.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111