80). Эти стенки служат дном другого котла, который можно считать заполненным как бы жидкостью: здесь вещество "кипит" и главный процесс -- перемешивание отдельных масс. У этого котла имеется крышка из тонкого упругого и легко деформируемого вещества. Снизу эта крышка постоянно атакуется вихрями кипящей плазмы. Благодаря своей упругости она все время колеблется подобно мембране звучащего динамика. Волны, распространяющиеся от этой мембраны, сильно разогревают газ окружающих внешних слоев солнечной атмосферы*.
Считается, что рано или поздно термоядерное топливо в солнечных недрах закончится, и наше светило "погаснет". Но такое предположение -- всего лишь одна из возможных (правда, господствующих в настоящий момент) гипотез. Она опирается на бесспорный факт ограниченности общей массы Солнца и, следовательно, запасов топлива; на довольно-таки простенькую аналогию, почерпнутую из звездной астрономии (раз известны остывающие звезды, значит, и Солнце ожидает то же самое); и, наконец, на следствия, вытекающие из космологической концепции Большого взрыва.
Однако существуют и альтернативные подходы. Можно с не меньшим успехом предположить, что запасы термоядерного топлива непрерывно возобновляются или пополняются (таковы закономерности космического вещественно-энергетического кругооборота). И привести не менее весомые аргументы. Строго говоря, утвердившаяся теория внутренних процессов, происходящих на Солнце, согласно которой его энергия обеспечивается термоядерными реакциями, тоже представляет собой всего лишь хорошо обоснованную и просчитанную астрономическую модель. Просто на сегодня мы не располагаем никакими иными знаниями, позволяющими объяснить источник и механизмы работы гигантского солнечного "котла". Но это ведь только сегодня! Напомним, что и о термоядерных реакциях нам стало известно чуть больше полувека назад.
* См.: Кононович Э.В. Солнце -- дневная звезда. М., 1982. С. 51--52.
Сошлемся еще на одну любопытную гипотезу, позволяющую лучше понять процессы, происходящие в глубинах дневного светила. Она исходит из предположения, что в недрах Солнца таятся частицы в пять раз тяжелее протонов. Они принадлежат к семейству частиц, из которых состоит более 90% массы всей Вселенной. Но ни одна из них до сих пор не обнаружена. Их существование проливает свет на многие из сложнейших проблем, стоящих перед астрофизиками, и объясняет "недостаточность" нейтринного потока, льющегося из солнечных недр. Такую картину нарисовал британский астрофизик Джон Фолкнер. Загадки наших ближайших космических окрестностей он связал со всем мирозданием.
Еще в 1926 году известный английский астроном Артур Эддингтон писал: "Разумно надеяться, что не в слишком отдаленном будущем мы станем достаточно знающими, чтобы понять столь простую вещь, как звезда". А спустя полвека ученые оказались перед лицом кризиса, который наводит на мысль, что Солнце не такое уж и простое. Вскоре после пророчества Эддингтона оказалось возможным рассчитать изменения температур и давлений в его недрах. Большую часть последовавшего полстолетия астрофизики были счастливы, что смогли постигнуть природу Солнца, которая определяется термоядерными реакциями, протекающими в его недрах.
Из теории следовало, что реакции эти порождают потоки элементарных частиц нейтрино, устремляющиеся из солнечных глубин в космос. С веществом они вступают в реакции крайне неохотно -- именно по этой причине и убегают из недр Солнца. Но когда на Земле были построены детекторы, достаточно чувствительные для регистрации и подсчета солнечных нейтрино, то была обнаружена лишь треть их потока, предсказываемая теорией. Результаты первых экспериментов были неоднократно подтверждены. После этого у ученых осталось две возможности. Либо неверны теории ядерной физики, либо астрофизики еще не до конца понимают столь простую вещь, как звезда.
Проблему можно было бы разрешить, если произвольным образом уменьшить предсказываемую температуру в центре Солнца на 10%. В таком случае количество излучаемых ней трино (в соответствии с теорией) совпадало бы с результатами наблюдений. Однако почему же Солнце должно быть внутри холоднее того, что требуют законы физики? Эту тайну пытались разгадать многие. Отгадок было столько же, сколько и астрофизиков. Одним из предположений, в частности, было такое: сердцевина Солнца быстро вращается; за этот счет давление там пониженное и температура соответственно меньше. Но никаких признаков подобного "сепаратного" вращения сердцевины обнаружить не удалось.
На этом "фоне" Д. Фолкнер совместно с Р. Джиллилэндом пришел еще к одному ответу. Одной из причин сравнительно холодного состояния центра Солнца могло бы оказаться присутствие частиц нового типа, которые уносили бы тепло из его недр, не принимая участия в ядерных реакциях. "Облако" подобных частиц, перемешиваясь с протонами, участвующими в реакциях, должно уносить энергию наружу, охлаждая недра нашего дневного светила. Ограничения, налагаемые законами физики, теорией строения звезд и фактом "пониженной" интенсивности потока нейтрино, дали Фолкнеру и Джиллилэнду возможность составить довольно определенное представление об этих частицах. Они должны быть в пять раз массивнее протонов. Поскольку они не принимают участия в термоядерных реакциях, то должны "замечать" другие частицы только за счет гравитации или "слабого" взаимодействия (но не "сильного", причастного к этим реакциям). Исследователи назвали ее "слабо взаимодействующей массивной частицей", или сокращенно "уимпом" (англ. Wimp -- weakli interacting massive particle). Они написали соответствующую статью, но она не была опубликована и пылилась в кабинете Фолкнера семь лет.
Далее ситуация разительно изменилась. Астрономы, наблюдая за вращением галактик, обнаруживали все новые доказательства того, что звезды, входящие в их состав, должны быть погружены в какое-то темное "гало". Невидимого вещества в них, может, раз в десять больше, чем того, что составляют звезды. И космологи стали склоняться к теориям, которые требуют наличия темной материи, тоже в десять раз более массивной, чем звездная. Специалисты по физике элементарных частиц, занятые созданием единой теории сил природы, достаточно благосклонно относятся к теории суперсимметрии. Последняя требует гораздо большего числа элементарных частиц, чем обнаружено до сих пор. Когда Фолкнер проверил вычисления, то обнаружил, что "новые" частицы теории суперсимметрии, вошедшие в моду в космологии и физике элементарных частиц, довольно точно соответствуют описанию его "уимпов". Фолкнер также пришел к выводу, что структура Солнца, включающая эти частицы, определяет характер его пульсаций, которые так озадачивали астрономов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
Считается, что рано или поздно термоядерное топливо в солнечных недрах закончится, и наше светило "погаснет". Но такое предположение -- всего лишь одна из возможных (правда, господствующих в настоящий момент) гипотез. Она опирается на бесспорный факт ограниченности общей массы Солнца и, следовательно, запасов топлива; на довольно-таки простенькую аналогию, почерпнутую из звездной астрономии (раз известны остывающие звезды, значит, и Солнце ожидает то же самое); и, наконец, на следствия, вытекающие из космологической концепции Большого взрыва.
Однако существуют и альтернативные подходы. Можно с не меньшим успехом предположить, что запасы термоядерного топлива непрерывно возобновляются или пополняются (таковы закономерности космического вещественно-энергетического кругооборота). И привести не менее весомые аргументы. Строго говоря, утвердившаяся теория внутренних процессов, происходящих на Солнце, согласно которой его энергия обеспечивается термоядерными реакциями, тоже представляет собой всего лишь хорошо обоснованную и просчитанную астрономическую модель. Просто на сегодня мы не располагаем никакими иными знаниями, позволяющими объяснить источник и механизмы работы гигантского солнечного "котла". Но это ведь только сегодня! Напомним, что и о термоядерных реакциях нам стало известно чуть больше полувека назад.
* См.: Кононович Э.В. Солнце -- дневная звезда. М., 1982. С. 51--52.
Сошлемся еще на одну любопытную гипотезу, позволяющую лучше понять процессы, происходящие в глубинах дневного светила. Она исходит из предположения, что в недрах Солнца таятся частицы в пять раз тяжелее протонов. Они принадлежат к семейству частиц, из которых состоит более 90% массы всей Вселенной. Но ни одна из них до сих пор не обнаружена. Их существование проливает свет на многие из сложнейших проблем, стоящих перед астрофизиками, и объясняет "недостаточность" нейтринного потока, льющегося из солнечных недр. Такую картину нарисовал британский астрофизик Джон Фолкнер. Загадки наших ближайших космических окрестностей он связал со всем мирозданием.
Еще в 1926 году известный английский астроном Артур Эддингтон писал: "Разумно надеяться, что не в слишком отдаленном будущем мы станем достаточно знающими, чтобы понять столь простую вещь, как звезда". А спустя полвека ученые оказались перед лицом кризиса, который наводит на мысль, что Солнце не такое уж и простое. Вскоре после пророчества Эддингтона оказалось возможным рассчитать изменения температур и давлений в его недрах. Большую часть последовавшего полстолетия астрофизики были счастливы, что смогли постигнуть природу Солнца, которая определяется термоядерными реакциями, протекающими в его недрах.
Из теории следовало, что реакции эти порождают потоки элементарных частиц нейтрино, устремляющиеся из солнечных глубин в космос. С веществом они вступают в реакции крайне неохотно -- именно по этой причине и убегают из недр Солнца. Но когда на Земле были построены детекторы, достаточно чувствительные для регистрации и подсчета солнечных нейтрино, то была обнаружена лишь треть их потока, предсказываемая теорией. Результаты первых экспериментов были неоднократно подтверждены. После этого у ученых осталось две возможности. Либо неверны теории ядерной физики, либо астрофизики еще не до конца понимают столь простую вещь, как звезда.
Проблему можно было бы разрешить, если произвольным образом уменьшить предсказываемую температуру в центре Солнца на 10%. В таком случае количество излучаемых ней трино (в соответствии с теорией) совпадало бы с результатами наблюдений. Однако почему же Солнце должно быть внутри холоднее того, что требуют законы физики? Эту тайну пытались разгадать многие. Отгадок было столько же, сколько и астрофизиков. Одним из предположений, в частности, было такое: сердцевина Солнца быстро вращается; за этот счет давление там пониженное и температура соответственно меньше. Но никаких признаков подобного "сепаратного" вращения сердцевины обнаружить не удалось.
На этом "фоне" Д. Фолкнер совместно с Р. Джиллилэндом пришел еще к одному ответу. Одной из причин сравнительно холодного состояния центра Солнца могло бы оказаться присутствие частиц нового типа, которые уносили бы тепло из его недр, не принимая участия в ядерных реакциях. "Облако" подобных частиц, перемешиваясь с протонами, участвующими в реакциях, должно уносить энергию наружу, охлаждая недра нашего дневного светила. Ограничения, налагаемые законами физики, теорией строения звезд и фактом "пониженной" интенсивности потока нейтрино, дали Фолкнеру и Джиллилэнду возможность составить довольно определенное представление об этих частицах. Они должны быть в пять раз массивнее протонов. Поскольку они не принимают участия в термоядерных реакциях, то должны "замечать" другие частицы только за счет гравитации или "слабого" взаимодействия (но не "сильного", причастного к этим реакциям). Исследователи назвали ее "слабо взаимодействующей массивной частицей", или сокращенно "уимпом" (англ. Wimp -- weakli interacting massive particle). Они написали соответствующую статью, но она не была опубликована и пылилась в кабинете Фолкнера семь лет.
Далее ситуация разительно изменилась. Астрономы, наблюдая за вращением галактик, обнаруживали все новые доказательства того, что звезды, входящие в их состав, должны быть погружены в какое-то темное "гало". Невидимого вещества в них, может, раз в десять больше, чем того, что составляют звезды. И космологи стали склоняться к теориям, которые требуют наличия темной материи, тоже в десять раз более массивной, чем звездная. Специалисты по физике элементарных частиц, занятые созданием единой теории сил природы, достаточно благосклонно относятся к теории суперсимметрии. Последняя требует гораздо большего числа элементарных частиц, чем обнаружено до сих пор. Когда Фолкнер проверил вычисления, то обнаружил, что "новые" частицы теории суперсимметрии, вошедшие в моду в космологии и физике элементарных частиц, довольно точно соответствуют описанию его "уимпов". Фолкнер также пришел к выводу, что структура Солнца, включающая эти частицы, определяет характер его пульсаций, которые так озадачивали астрономов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134