Это могут засвидетельствовать самые выдающиеся люди и благородные ученые... все они подтвердили, что инструмент обманывает... Галилео больше нечего было сказать, и ранним утром 26-го он печальный уехал... даже не поблагодарив Маджини за его роскошное угощение..."
Сам Маджини писал Кеплеру 26 мая: "Он ничего не достиг, так как никто из присутствовавших более двадцати ученых не видел отчетливо новых планет; едва ли он сможет сохранить эти планеты". Несколько месяцев спустя Маджини повторяет: "Лишь люди, обладающие острым зрением, проявили некоторую степень уверенности". После того как Кеплера буквально завалили отрицательными письменными отчетами о наблюдениях Галилея, он попросил у Галилея доказательств. "Я не хочу скрывать от Вас, что довольно много итальянцев в своих письмах в Прагу утверждают, что не могли увидеть этих звезд [лун Юпитера] через Ваш телескоп. Я спрашиваю себя, как могло случиться, что такое количество людей, включая тех, кто пользовался телескопом, отрицают этот феномен? Вспоминая о собственных трудностях, я вовсе не считаю невозможным, что один человек может видеть то, что не способны заметить тысячи... И все-таки я сожалею о том, что подтверждений со стороны других людей приходится ждать так долго... Поэтому, Галилео, я Вас умоляю как можно быстрее представить мне свидетельства очевидцев..." Галилей как раз-таки и ссылался на таких очевидцев, подтверждавших открытие великого итальянца. Но смысл этой удивительной переписки в другом: мало, оказывается, смотреть в телескоп -- нужно обладать не столько хорошим зрением, сколько зоркостью ума.
Под прицельным огнем инквизиции, только что отправившей на костер Джордано Бруно, Галилей продолжал отстаивать гелиоцентрическую концепцию Вселенной, подкрепляя ее все новыми и новыми астрономическими и физическими фактами. Затасканный по судам и тюрьмам, больной, полуослепший, но не сломленный, -великий ученый явился открывателем новой эры в наблюдательной астрономии. С момента, когда Галилей направил сделанную собственноручно "трубу" в небо, начался отсчет практической революции -- переворот в экспериментальном естествознании. В следующем веке весомый вклад в развитие наблюдательной астрономии внес Исаак Ньютон. Он изобрел принципиально новую "зрительную трубу" -- телескоп-рефлектор (рис. 45). Отныне телескоп сделался неотъемлемым и мощнейшим средством научного познания и в какой-то мере олицетворением прогресса самой науки.
Чем дальше проникали ученые в глубь Вселенной, тем более интригующими становились тайны Мироздания. Конечно, Тайна была всегда, и она, как спасительный огонек надежды, манила подвижников науки, больных и одержимых этой Тайной. Каждому чудилось: вот сейчас он распахнет дверь, и человечество шагнет из темноты незнания и заблуждения на широкий и светлый простор. Но действительность оказывалась совсем иной. За первой дверью обнаруживалась другая, столь же наглухо захлопнутая, за ней -третья, четвертая, десятая, сотая. И так -- без конца. Познание по неволе и необходимости превращается в непрерывное преодоление тайн. Каждый настоящий исследователь -- царь Эдип, который ищет ответы на все новые и новые загадки Сфинкса-Природы.
Дальнейшее победное шествие науки в ХVII и ХVIII веках неотделимо от успехов теоретической и практической механики, неотъемлемой частью которой явилась небесная механика. Оно представлено величайшими умами, составившими гордость и славу человечества, творившими в разных странах: Иоганн Кеплер -- в Германии, Рене Декарт -- во Франции, Христиан Гюйгенс -- в Голландии, Исаак Ньютон -- в Англии, Михаил Ломоносов -- в России. В результате их усилий была обоснована механистическая картина Природы и Космоса. В науке на долгое время установились относительное единодушие и спокойствие.
В ХIХ веке наблюдательная астрономия по-прежнему опиралась на прочный фундамент механистического мировоззрения, закон всемирного тяготения, постоянные измерения и скрупулезный математический расчет. В это время астрономия являлась одной из немногих естественных наук, где точные практические вычисления составляли основное занятие ученых. Некоторые выдающиеся открытия вообще делались "на кончике пера", то есть путем математических вычислений и расчетов за письменным столом. Так были открыты, к примеру, некоторые из крупных астероидов, а в дальнейшем -- две новые, ранее неизвестные планеты Солнечной системы -- Нептун и Плутон.
Последнее открытие произошло уже в нашем веке. ХХ век вообще необычайно раздвинул границы наблюдательной астрономии. К чрезвычайно усовершенствованным оптическим телескопам (рис. 46) добавились новые, ранее совершенно невиданные -радиотелескопы (рис. 47, 48), а затем и рентгеновские телескопы (последние применимы только в безвоздушном пространстве и в открытом космосе) (рис. 49). Точно так же исключительно с помощью спутников и высотных аэростатов используются гамма-телескопы, которые по существу представляют собой счетчики g-фотонов (рис. 50), позволяющие зафиксировать уникальную информацию о далеких объектах и экстремальных состояниях материи во Вселенной (в частности, при помощи гамма-аппаратуры одно время усиленно пытались (и -- теперь уже ясно -- безуспешно) установить в отдаленных участках Космоса наличие изолированных областей, состоящих из антивещества). Данные, полученные с помощью новых приборов, отличны от привычных фотографий -- зато позволяют получить уникальные результаты.
На этом список новых представителей "телескопического семейства" не исчерпывается. Правда, для регистрации ультрафиолетового и инфракрасного излучения используются обычные телескопы -- с той разницей, что в первом случае применяются алюминированные зеркала, а во втором -- объективы изготовляются из мышьяковистого трехсернистого стекла и других специальных сортов стекла. Полученное из Космоса инфракрасное излучение затем преобразуется в тепловую или фотонную энергию для того, чтобы его было удобнее измерять. Как и в случае с g-лучами, аппаратуру, регистрирующую инфракрасное излучение, требуется поднимать на большие высоты. С ее помощью удалось открыть много ранее неизвестных объектов, постичь важные, нередко удивительные закономерности Вселенной. Так, вблизи центра нашей галактики удалось обнаружить загадочный инфракрасный объект, светимость которого в 300 000 раз превышает светимость Солнца. Природа его неясна. Зарегистрированы и другие мощные источники инфракрасного излучения, находящиеся в других галактиках и внегалактическом пространстве.
Создания принципиально новой аппаратуры потребовала нейтринная астрономия. Опираясь на вывод физиков-теоретиков о существовании вездесущей и всепроникающей частицы нейтрино, которая образуется при термоядерных реакциях (в том числе происходящих в недрах Солнца и звезд), астрономы-практики предложили для ее регистрации (и, соответственно, получения уникальной информации) необычную установку, ничем не напоминающую привычный телескоп.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
Сам Маджини писал Кеплеру 26 мая: "Он ничего не достиг, так как никто из присутствовавших более двадцати ученых не видел отчетливо новых планет; едва ли он сможет сохранить эти планеты". Несколько месяцев спустя Маджини повторяет: "Лишь люди, обладающие острым зрением, проявили некоторую степень уверенности". После того как Кеплера буквально завалили отрицательными письменными отчетами о наблюдениях Галилея, он попросил у Галилея доказательств. "Я не хочу скрывать от Вас, что довольно много итальянцев в своих письмах в Прагу утверждают, что не могли увидеть этих звезд [лун Юпитера] через Ваш телескоп. Я спрашиваю себя, как могло случиться, что такое количество людей, включая тех, кто пользовался телескопом, отрицают этот феномен? Вспоминая о собственных трудностях, я вовсе не считаю невозможным, что один человек может видеть то, что не способны заметить тысячи... И все-таки я сожалею о том, что подтверждений со стороны других людей приходится ждать так долго... Поэтому, Галилео, я Вас умоляю как можно быстрее представить мне свидетельства очевидцев..." Галилей как раз-таки и ссылался на таких очевидцев, подтверждавших открытие великого итальянца. Но смысл этой удивительной переписки в другом: мало, оказывается, смотреть в телескоп -- нужно обладать не столько хорошим зрением, сколько зоркостью ума.
Под прицельным огнем инквизиции, только что отправившей на костер Джордано Бруно, Галилей продолжал отстаивать гелиоцентрическую концепцию Вселенной, подкрепляя ее все новыми и новыми астрономическими и физическими фактами. Затасканный по судам и тюрьмам, больной, полуослепший, но не сломленный, -великий ученый явился открывателем новой эры в наблюдательной астрономии. С момента, когда Галилей направил сделанную собственноручно "трубу" в небо, начался отсчет практической революции -- переворот в экспериментальном естествознании. В следующем веке весомый вклад в развитие наблюдательной астрономии внес Исаак Ньютон. Он изобрел принципиально новую "зрительную трубу" -- телескоп-рефлектор (рис. 45). Отныне телескоп сделался неотъемлемым и мощнейшим средством научного познания и в какой-то мере олицетворением прогресса самой науки.
Чем дальше проникали ученые в глубь Вселенной, тем более интригующими становились тайны Мироздания. Конечно, Тайна была всегда, и она, как спасительный огонек надежды, манила подвижников науки, больных и одержимых этой Тайной. Каждому чудилось: вот сейчас он распахнет дверь, и человечество шагнет из темноты незнания и заблуждения на широкий и светлый простор. Но действительность оказывалась совсем иной. За первой дверью обнаруживалась другая, столь же наглухо захлопнутая, за ней -третья, четвертая, десятая, сотая. И так -- без конца. Познание по неволе и необходимости превращается в непрерывное преодоление тайн. Каждый настоящий исследователь -- царь Эдип, который ищет ответы на все новые и новые загадки Сфинкса-Природы.
Дальнейшее победное шествие науки в ХVII и ХVIII веках неотделимо от успехов теоретической и практической механики, неотъемлемой частью которой явилась небесная механика. Оно представлено величайшими умами, составившими гордость и славу человечества, творившими в разных странах: Иоганн Кеплер -- в Германии, Рене Декарт -- во Франции, Христиан Гюйгенс -- в Голландии, Исаак Ньютон -- в Англии, Михаил Ломоносов -- в России. В результате их усилий была обоснована механистическая картина Природы и Космоса. В науке на долгое время установились относительное единодушие и спокойствие.
В ХIХ веке наблюдательная астрономия по-прежнему опиралась на прочный фундамент механистического мировоззрения, закон всемирного тяготения, постоянные измерения и скрупулезный математический расчет. В это время астрономия являлась одной из немногих естественных наук, где точные практические вычисления составляли основное занятие ученых. Некоторые выдающиеся открытия вообще делались "на кончике пера", то есть путем математических вычислений и расчетов за письменным столом. Так были открыты, к примеру, некоторые из крупных астероидов, а в дальнейшем -- две новые, ранее неизвестные планеты Солнечной системы -- Нептун и Плутон.
Последнее открытие произошло уже в нашем веке. ХХ век вообще необычайно раздвинул границы наблюдательной астрономии. К чрезвычайно усовершенствованным оптическим телескопам (рис. 46) добавились новые, ранее совершенно невиданные -радиотелескопы (рис. 47, 48), а затем и рентгеновские телескопы (последние применимы только в безвоздушном пространстве и в открытом космосе) (рис. 49). Точно так же исключительно с помощью спутников и высотных аэростатов используются гамма-телескопы, которые по существу представляют собой счетчики g-фотонов (рис. 50), позволяющие зафиксировать уникальную информацию о далеких объектах и экстремальных состояниях материи во Вселенной (в частности, при помощи гамма-аппаратуры одно время усиленно пытались (и -- теперь уже ясно -- безуспешно) установить в отдаленных участках Космоса наличие изолированных областей, состоящих из антивещества). Данные, полученные с помощью новых приборов, отличны от привычных фотографий -- зато позволяют получить уникальные результаты.
На этом список новых представителей "телескопического семейства" не исчерпывается. Правда, для регистрации ультрафиолетового и инфракрасного излучения используются обычные телескопы -- с той разницей, что в первом случае применяются алюминированные зеркала, а во втором -- объективы изготовляются из мышьяковистого трехсернистого стекла и других специальных сортов стекла. Полученное из Космоса инфракрасное излучение затем преобразуется в тепловую или фотонную энергию для того, чтобы его было удобнее измерять. Как и в случае с g-лучами, аппаратуру, регистрирующую инфракрасное излучение, требуется поднимать на большие высоты. С ее помощью удалось открыть много ранее неизвестных объектов, постичь важные, нередко удивительные закономерности Вселенной. Так, вблизи центра нашей галактики удалось обнаружить загадочный инфракрасный объект, светимость которого в 300 000 раз превышает светимость Солнца. Природа его неясна. Зарегистрированы и другие мощные источники инфракрасного излучения, находящиеся в других галактиках и внегалактическом пространстве.
Создания принципиально новой аппаратуры потребовала нейтринная астрономия. Опираясь на вывод физиков-теоретиков о существовании вездесущей и всепроникающей частицы нейтрино, которая образуется при термоядерных реакциях (в том числе происходящих в недрах Солнца и звезд), астрономы-практики предложили для ее регистрации (и, соответственно, получения уникальной информации) необычную установку, ничем не напоминающую привычный телескоп.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134