ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Механический подход Гельмгольца, который он сам был вынужден признать узким, дал возможность установить абсолютную меру для «живой силы» и рассматривать всевозможные формы энергии либо в виде кинетической («живых сил»), либо потенциальной («сил напряжения»).
Количество превращенной формы движения можно измерить величиной той механической работы, например, по поднятию груза, которую можно было бы получить, если целиком все исчезнувшее движение затратить на это поднятие. Экспериментальное обоснование принципа и заключается, прежде всего, в доказательстве количественной определенности этой работы. Этой задаче и были посвящены классические опыты Джоуля.
Джемс Прескот Джоуль (1818–1889) — манчестерский пивовар — начал с изобретения электромагнитных аппаратов. Эти приборы и явления, с ними связанные, стали конкретным ярким проявлением превратимости физических сил. В первую очередь Джоуль исследовал законы выделения тепла электрическим током. Так как опыты с гальваническими источниками (1841) не давали возможности установить, является ли теплота, развиваемая током в проводнике, только перенесенной теплотой химических реакций в батарее, то Джоуль решил поставить эксперимент с индукционным током.
Он поместил в замкнутый сосуд с водой катушку с железным сердечником, концы обмотки катушки присоединялись к чувствительному гальванометру. Катушка приводилась во вращение между полюсами сильного электромагнита, по обмотке которого пропускался ток от батареи. Число оборотов катушки достигало 600 в минуту, при этом попеременно четверть часа обмотка электромагнита была замкнута, четверть разомкнута. Тепло, которое выделялось вследствие трения, во втором случае вычиталось из тепла, выделяемого в первом случае. Джоуль установил, что количество тепла, выделяемое индукционными токами, пропорционально квадрату силы тока. Так как в данном случае токи возникали вследствие механического движения, то Джоуль пришел к выводу, что тепло можно создавать с помощью механических сил.
Далее Джоуль, заменив вращение рукой вращением, производимым падающим грузом, установил, что «количество теплоты, которое в состоянии нагреть 1 фунт воды на 1 градус, равно и может быть превращено в механическую силу, которая в состоянии поднять 838 фунтов на вертикальную высоту в 1 фут». Эти результаты и были им сведены в работе «О тепловом эффекте магнитоэлектричества и механическом значении тепла», доложенной на физико-математической секции Британской ассоциации 21 августа 1843 года.
Наконец, в работах 1847–1850 годов Джоуль разрабатывает свой главный метод, вошедший в учебники физики. Он дает наиболее совершенное определение механического эквивалента тепла. Металлический калориметр устанавливался на деревянной скамейке. Внутри калориметра проходит ось, несущая лопасти или крылья. Крылья эти расположены в вертикальных плоскостях, образующих угол 45 градусов друг с другом (восемь рядов). К боковым стенкам в радиальном направлении прикреплены четыре ряда пластинок, не препятствующие вращению лопастей, но препятствующие движению всей массы воды. В целях тепловой изоляции металлическая ось разделена на две части деревянным цилиндром. На внешнем конце оси имеется деревянный цилиндр, на который наматываются две веревки в одинаковом направлении, покидающие поверхность цилиндра в противоположных точках. Концы веревок прикреплены к неподвижным блокам, оси которых лежат на легких колесиках. На оси намотаны веревки, несущие грузы. Высота падения грузов отсчитывается по рейкам.
Далее Джоуль определял эквивалент, измеряя теплоту, выделяемую при трении чугуна о чугун. На оси в калориметре вращалась чугунная пластинка. Вдоль оси свободно скользят кольца, несущие рамку, трубку и диск, по форме пригнанный к чугунной пластинке. С помощью стержня и рычага можно произвести давление и прижать диск к пластинке. Последние измерения механического эквивалента Джоуль производил уже в 1878 году.
Расчеты Майера и опыты Джоуля завершили двухсотлетний спор о природе теплоты. Доказанный на опыте принцип эквивалентности между теплотой и работой можно сформулировать следующим образом: во всех случаях, когда из теплоты появляется работа, тратится количество тепла, равное полученной работе, и наоборот, при затрате работы получается то же количество тепла. Этот вывод был назван Первым законом термодинамики.
Согласно этому закону, работу можно превратить в тепло и наоборот — теплоту в работу. Причем обе эти величины равны друг другу. Вывод этот справедлив для термодинамического цикла, в котором система должна быть приведена к исходным условиям. Таким образом, для любого кругового процесса совершенная системой работа равна полученной системой теплоте.
Открытие Первого закона термодинамики доказало невозможность изобретения вечного двигателя. Закон сохранения энергии поначалу так и называли — «вечный двигатель невозможен».
ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА
«В свое время Ньютон был убежден в том, что свет состоит из мельчайших частичек, скорость перемещения которых практически бесконечна, — говорит Т.Редже в предыстории вопроса. — Его современник Гюйгенс, напротив, был сторонником волнового механизма распространения света, подобного процессу распространения звука в воздухе или в любой материальной среде. Непререкаемый авторитет Ньютона не допустил признания гипотезы Гюйгенса.
В 1700 году Юнг, Френель и некоторые другие ученые приступили к исследованию оптических явлений, непонятных с точки зрения представлений Ньютона. Эти явления прямо указывали на волновую природу света. Как ни парадоксально, но среди этих явлений были и кольца Ньютона, хорошо известные фотографам и возникающие, когда диапозитив помещается между стеклянными пластинами. Яркая окраска некоторых насекомых также возникает в результате сложных процессов интерференции световых волн, происходящих в тонких слоях жидких кристаллов, расположенных на поверхности тела насекомых».
Однако, несмотря на очевидные успехи волновой механической теории света во второй половине XIX века, она была подвергнута сомнению по двум причинам. Одна — опыты Фарадея, открывшего действие магнитного поля на свет. Другая — исследования связи между электрическими и магнитными явлениями, которые проводил Максвелл. «Открытие электромагнитной природы света является великолепной иллюстрацией диалектики развития содержания и формы, — пишет П.С. Кудрявцев. — Новое содержание — электромагнитные волны — было выражено в старой форме картезианских вихрей.
Несоответствие нового содержания, появившегося в результате развития электромагнетизма, не только старой форме теории дальнодействия, но и механической теории эфира ощущал уже Фарадей, искавший для выражения этого содержания новую форму.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168