ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Во-вторых, все время остается сомнение, что есть и другие решения, которые не хуже сходятся с опытом, но остались нами не замеченными.
Было придумано множество математических ухищрений, которые облегчали задачи. Но довольно долгое время проблема казалась почти неразрешенной. Значительный шаг вперед был сделан в середине тридцатых годов. Теоретически было показано, что уравнения решаются более или менее достоверно в нужную нам сторону (от рентгенограммы к структуре) в случае, если исследуемая молекула содержит один тяжелый атом, и тогда проблему «квадратного корня» удается обойти. Но что делать, если интересующая нас органическая молекула не содержит таких атомов? Ввести?! Химики, если захотят, легко могут провести эту операцию. Но вводить такой атом надо умело, чтобы не испортить вид молекулы.
В разных случаях это приходится делать по-разному: один раз тяжелый атом-метку выгодно крепить в одном месте молекулы, другой раз – в другом. Так получаются «меченые» вещества, которые обычно и решают задачу.
Метод «тяжелого атома» и метод «проб и ошибок» могут применяться совместно. Первый подсказывает исследователю-структурщику, какие модели молекул имеет смысл пробовать, а второй – позволяет ему более уверенно угадывать знаки квадратных корней.
Метод «тяжелого атома» довольно простой и автоматичный, и его выполнение может быть легко запрограммировано для электронно-вычислительной машины. Но у него есть и недостаток – он не нагляден. Второй метод более творческий, требует хорошего знания всех закономерностей, наличия развитой интуиции и использует для наглядности модели. Кроме того, они по силам бедной лаборатории, не имеющей еще ЭВМ.
Не приходится удивляться, что среди представителей класса структурщиков – в настоящее время их число во всем мире наверняка перевалило за десяток тысяч в зависимости от способностей, темперамента и характера мы находим как сторонников игры на моделях, то есть любителей «угадать» структуру, так и лиц, полагающих необходимым следовать некоторой строгой процедуре, не содержащей в себе произвольных выдумок.
Сказать, какой из этих двух характеров «лучше», разумеется, нельзя. Можно привести примеры великолепных успехов, достигнутых на обеих дорогах. Превосходной иллюстрацией могут быть как раз работы по изучению структуры биологических веществ. Нобелевская премия за первое определение структуры белковой молекулы была присуждена Максу Перутцу, который потратил почти четверть века на расшифровку рентгенограмм различных производных белка, помеченных тяжелыми атомами. И та же Нобелевская премия за открытие структуры гена была дана Уотсону и Крику, которые достигли успеха, угадав структуру, играя на моделях.
Есть ли у науки история?
Каждое открытие в науке есть результат слияния множества логических линий, опытных исследований и теоретического мышления. Я представляю себе историю науки в виде огромного листа белой бумаги, по которому невидимые руки чертят одновременно сотни, тысячи кривых, прямых, зигзагообразных, ломаных, всяких линий, и каждая из них, несмотря на повороты, упрямо следует своему направлению. Потом какие-то две линии встречаются, затем к ним прибавляется третья, четвертая, так постепенно создается тот мощный поток, который несет в себе весь опыт и всю мудрость знания, которое и есть Наука.
Слияние линий дает открытие. Оно неизбежно, и момент его в небольшой степени случаен. Оглядываясь назад, мы поражаемся тому бесконечному числу тоненьких ручейков, без которых было бы невозможно решающее пересечение.
Прослеживая ход всех линий, берущих свое начало в глубине веков, при желании можно перекинуть мост от законов Ньютона и Менделеева к открытию молекулярного строения гена. Но такие рассуждения могут показаться формальными. Чтобы получить яркую картину рождения открытия, достаточно включить в круг внимания несколько поколений его предков. Так, к ответу на вопрос, что такое ген, привели вот какие линии: развитие метода дифракции рентгеновских лучей; развитие представлений о пространственном строении молекул и кристаллов (впрочем, тесно переплетающихся с прогрессом рентгеноструктурного анализа); развитие биохимических исследований строения составных частей живой клетки, прогресс описательной генетики.
Свидетелем и участником самых первых шагов науки в области применения дифракции рентгеновских лучей к изучению строения органического вещества был я сам. Эта важнейшая часть истории интересующего нас открытия началась в тридцатых годах. Да, всего лишь каких-нибудь тридцать-сорок лет тому назад. Получается так, что человек лет пятидесяти с небольшим хвостиком, по заверениям геронтологов только что покинувший период юности, который длится до пятидесяти лет (зрелый возраст – сообщаю для сведения молодых читателей, которым сорокалетние кажутся дряхлыми старцами, – длится от пятидесяти до семидесяти лет, после чего наступает старость, которая длится сколько бог даст), может писать историю науки.
На первый взгляд это может показаться странным. Но только на первый взгляд. Небольшой экскурс в статистику поможет понять, в чем тут дело.
Социологи, изучающие так называемый прогресс общества, характеризуют его временем удваивания. Оказывается, самые различные события, такие, как число технических изобретений и число автомобильных катастроф, число новых городов и количество людей, умирающих от инфаркта, число научных работников и расходы на вооружения – все это может быть изображено кривыми геометрической прогрессии. А свойство прогрессии, как известно еще со школьной скамьи, состоит в том, что имеется возможность характеризовать рост, происходящий в геометрической прогрессии, временем удваивания. Времена удваивания населения, научных работников, телевизоров, мощности взрыва бомб, энергии электронов, достигаемой в ускорителях, числа разводов, числа сочиненных стихотворений и так далее и тому подобное, разумеется, резко отличаются друг от друга. Одни параметры растут медленно, другие уменьшаются, третьи растут быстро.
Однако замечательным является то обстоятельство, что время удваивания сохраняется одним и тем же во все времена, насколько нам удается заглянуть в глубь истории. Можно составить таблицы времен удваивания для разных стран, можно это делать для мира в целом.
Нижеследующие числа относятся ко всему миру, а значит, носят весьма усредненный характер.
Население, рабочая сила, число университетов удваивается за 50 лет.
Число важных открытий, точность инструментов, число учащихся на тысячу человек населения удваивается за 20 лет.
Число научных статей, число ученых со степенями удваивается за 15 лет.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65