ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Этот самый простой вариант случайности осуществляется в азартных играх. (Потому мы и начали книгу рассказом об азартных играх.) Введем число вероятности на примере игральной кости.
Группой исходов события является выпадение единицы, двойки, тройки, четверки, пятерки и шестерки. «Исход события» звучит немного громоздко, и мы надеемся, что читатель не будет путаться, если мы иногда не станем писать первое слово. Итак, событий в группе шесть – это полное число событий.
Следующий вопрос, который надо себе задать, таков: сколько из этих событий дают интересующий нас результат? Допустим, мы хотим узнать вероятность выпадения тройки, то есть нас волнует осуществление одного события из группы в шесть. Тогда число благоприятных вариантов (одно – тройка) делят на полное число событий и получают вероятность появления интересующего нас события. В нашем примере вероятность выпадения тройки будет равна 1/6. А чему равна вероятность появления четной цифры? Очевидно, 3/6 (три благоприятных события делят на общее число событий, равное шести). Вероятность же выхода на кости числа, кратного трем, равна 2/6.
Еще примеры.
В ящике, куда заглянуть нельзя, находится сто шаров, четыре из которых черные. Чему равна вероятность вытащить черный шар? Рассматривается группа из ста событий; благоприятных событий четыре, значит, вероятность вытянуть черный шар равна 0,04. Вероятность вытянуть туза пик из полной колоды равна 1/52. Вероятность вытянуть любую пику – 1/4, какой-либо туз – 1/13, а любую пиковую фигуру – 3/13 и так далее.
Мы рассмотрели примеры, когда сразу ясно, о какой группе событий идет речь, когда вполне очевидно, что все события из-за равенства условий имеют одинаковые шансы осуществиться, когда заранее ясно, чему равняется вероятность интересующего нас события. Но есть случаи и посложнее. Подробнее о них будет рассказано в других главах, а сейчас скажем, что осложнения могут быть двух типов.
Первое – вероятность исхода события не очевидна заранее. И тогда значение вероятности может быть установлено лишь на опыте. К этому, так называемому статистическому, методу определения вероятности мы будем возвращаться неоднократно и тогда подробнее о нем поговорим.
Другая трудность, скорее логического порядка, появляется тогда, когда нет однозначности в выделении группы явлений, к которой относится интересующее нас событие.
Скажем, некто Пьер отправился на мотоцикле на работу на улицу Гренель и по дороге наскочил на грузовик. Можно ли ответить, какова вероятность этого грустного происшествия? Без сомнения, можно, но необходимо оговорить исходную ситуацию. А выбор ее, конечно, неоднозначен. Ведь можно привлечь к статистике лишь выезды на работу молодых парижан; а можно исследовать группу выездов всех парижан в любое время; можно расширить статистику на другие города, а не ограничиться Парижем. Во всех этих вариантах вероятности будут разными.
Итак, вывод один: когда начинаешь оперировать числами, необходима точность в постановке задачи; исследователь всегда должен формализовать явление – с этим уж ничего не поделаешь.
Вернемся теперь к игре в кости. Одной костью никто не играет: слишком просто и загодя известно, что вероятность выпадения любой грани – 1/6, и никаких математических задач в такой игре не возникает.
При бросании трех или даже двух костей сразу появляются проблемы, и можно уже задать, скажем, такой вопрос: какова вероятность появления двух шестерок? Каждая из них появляется независимо с вероятностью, равной 1/6. При выпадении шестерки на одной кости вторая может лечь шестью способами. Значит, вероятность выпадения двух шестерок одновременно будет равна произведению двух вероятностей (1/6·1/6). Это пример так называемой теории умножения вероятностей. Но на этом новые проблемы не кончаются.
В начале XVII века к великому Галилею явился приятель, который захотел получить разъяснение по следующему поводу. Играя в три кости, он заметил, что число 10, как сумма очков на трех костях, появляется чаще, чем число 9. «Как же так, – спрашивал игрок, – ведь как в случае девятки, так и в случае десятки эти числа набираются одинаковым числом способов, а именно шестью?» Приятель был совершенно прав. Посмотрите на рисунок, на котором показано, как можно представить девятку и десятку в виде сумм.
Разбираясь в этом противоречии, Галилей решил одну из первых задач так называемой комбинаторики – основного инструмента расчетов вероятностей.
Итак, в чем же дело? А вот в чем.
Важно не то, как сумма разлагается на слагаемые, а сколько вариантов выпадения костей приводят к суммам в «девять» и «десять» очков. Галилей нашел, что «десять» осуществляется 27 способами, а «девять» – 25. Эмпирическое наблюдение получило теоретическое истолкование. Что же это за разница между числом представлений суммы через слагаемые и числом вариантов выпада костей?
Вот на какую тонкость необходимо обратить внимание. Рассмотрим сначала случай, когда на трех костях три разные цифры, скажем 1, 2, и 6. Этот результат может осуществляться шестью вариантами: единица на первой кости, двойка на второй и шестерка на третьей; единица на первой, шестерка на второй, двойка на третьей; также возможны два случая, когда двойка окажется на первой кости и еще два – когда на первой кости выпадет шестерка (этот вариант приведен в таблице).
Иначе обстоит дело, когда сумма представлена таким образом, что два слагаемых одинаковые, например, 1 + 4 + 4. Только один вариант такого разложения появится, если на первой кости покажется единица, а на двух других четверки, ибо перестановка цифры на второй и третьей костях не дает нового варианта. Второй вариант возникает, когда единичка покажется на второй кости, а третий, если она появится на третьей кости. Итого три возможности.
Наконец, ясно, что если сумма разложена на 3 + 3 + 3, то на костях такое событие осуществляется единственным способом.
В нашей таблице это число вариантов указано в скобках рядом с представлением суммы. Складывая числа в скобках, мы получим 25 и 27, которые нашел Галилей. Вероятности появления на двух костях сумм 9 и 10 относятся как 25 к 27.
Это с виду простое объяснение не лежало на поверхности. Достаточно сказать, что Лейбниц полагал одинаковыми вероятности появления на двух костях как 11 очков, так и 12. После работы Галилея ошибочность такого заключения стала очевидной: 12 осуществляется единственным способом: двумя шестерками, а 11 появляется в двух случаях, когда шестерка на первой кости, а пятерка – на второй, и наоборот.
При бросании двух костей чаще всего появляется сумма, равная 7. Имеется шесть возможностей набора этой суммы. Суммы 8 и 6 осуществляются уже пятью комбинациями каждая.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65