Гиссен, 1810); «Облака» Вольфом (Берл., 1812); «Птицы» Рюккертом в его посмертных сочинениях (Лейпц., 1867); «Общее собрание» И.Г. Фоссом (3 т., Брауншв., 1821), Дройзеном (3 т., Берл., 1835 – 38; 2 т., Лейпц., 1871), Иер. Мюллером (3 т., Лейпц., 1843 – 46), Зегером (3 т., Франкф., 1842 – 48), Шнитцером (Штутгарт, 1842 – 54), Минквицем (Штутг., 1854, неоконч.) и Деннером (3 т., Франкф., 1861 – 62). Собрание важнейших древних схолий выпустил Дюбнер (Пар., 1842).
Арифметика
Арифметика (от греч. слов ariJmoV – число и tecnh – искусство) – часть математики, которая занимается изучением свойств определенных конкретных величин; в более тесном смысле А. есть наука о числах, выраженных цифрами, и занимается действиями над числами. А. можно делить на низшую и высшую, понимая под первой четыре основных действия с целыми и дробными числами и их практические применения, учение о пропорциях, возвышение в степень, извлечение квадратных и кубичных корней и решение численных уравнений, между тем как высшая А. занимается исследованием свойств чисел вообще, деления целых чисел на части, непрерывных дробей и пр. – А. находится в тесной, неразрывной связи с алгеброй, которую Ньютон называл «Общей арифметикой»; вот почему действия – возвышение в степени, извлечение корней и решения численных уравнений, относящиеся собственно к алгебре, должны войти в состав А., рассматривая последнюю как техническую часть алгебры. Рассматривая возвышение в степень, как частный случай умножения и принимая во внимание, что при извлечении корней и решении численных уравнений мы производим какое-либо из четырех основных действий, некоторые математики силились ограничить А. лишь основными действиями, а именно: сложения, вычитания, умножения и деления, но подобное ограничение несправедливо, так как три второстепенных действия А. производятся в известном порядке, который составляет существенную часть каждого действия. Многие писатели затруднялись разграничением алгебры от А.; так как первая занимается теми же действиями, что и вторая. Приняв однако в соображение, что алгебра доказывает те правила, которыми А. руководствуется, и что алгебра имеет предметом преобразование действий одних в другие так, чтобы А. оставалось лишь исполнение самых простейших действий, можно таким образом утверждать, что алгебра есть обобщенная А., которая, в свою очередь, есть наука о числах и свойствах вполне определенных величин.
История А.
Трудно сказать что-либо положительное о времени и месте рождения А. Многочисленные исследователи этого вопроса приписывают открытие истин А. различным народностям и приурочивают его к разным эпохам. Историк Иосиф Флавий («Древняя иудея», кн. I, гл. 8) утверждает, что еще праотец Авраам, в пребывании своем в Египте, во время голода, постигшего Ханаанскую землю, первый обучил египтян арифметике и астрономии. Платон (in Phaedro)и Диоген Лаэрций (in Proemio) тоже считают Египет колыбелью А. и геометрии. Они говорят, что числа, числительное искусство и геометрия ниспосланы египтянам от их бога Тевта (Theut) или Тота (Thot), владевшего торговлей и числами, подобно греческому Меркурию. Другие, более позднейшие, исследователи полагают, что А. открыта халдейцами, а Страбон в своей «Географии», говорит, что современники его приписывали изобретение А. финикиянам, так как они первые стали производить обширную торговлю, которая, без сомнения, требовала некоторых познаний в счетной науке. Оставляя однако в стороне подобные догадки, достоверным можно принять относительно исторического происхождения А., что люди начали считать с того самого отдаленного времени, когда, приходя во взаимное столкновение между собою, они стали группироваться в общества, ибо, без сомнения, они знали число членов своих семейств, считали свои стада и т. п. Таким образом, начало А. должно отнести к эпохе первого проявления гражданского строя среди людей; что же касается усовершенствования первобытных понятий о счислении, то они должны быть отнесены к гораздо позднейшим временам. Первыми историческими математиками, сознательно излагавшими А., как науку, должны быть признаны древние греки, а именно: Евклид (7 – 10 книги его «Элементов»), Диофант – математик IV ст. до Р. Х. (оставил по себе 13 трактатов, из которых до нас дошло 6) и Никомах, живший в I веке до Р. Х. В их сочинениях мы встречаемся с двумя различными терминами: Logistikh – логистика, так наз. «числительное искусство» и ariJmhtekh – арифметика – наука о свойствах чисел; очевидно, что древние греки различали особенными именами практическую часть А. от теоретической. Греки, обогатив А., заимствованную ими, вероятно, от египтян, передали ее через Александрийскую школу римлянам и арабам, от которых она начинает проникать повсюду лишь в эпоху Возрождения. Открытие книгопечатания оказало немаловажную услугу распространению первоначальных истин А. Насколько медленно проникали во всеобщее сознание эти истины до эпохи Возрождения, видно из того факта, что даже у арабов, ревностных носителей «математический цивилизации», всякий знавший едва четыре основных действия А., считался ученым математиком; при всем том число подобных ученых было весьма ограничено. С открытия книгопечатания стали чаще появляться монографии и трактаты по А., которые хотя не вносили ничего нового в А., унаследованную от арабов и греков, но вместе с тем получался толчок к усовершенствованию древних методов. В 1478 г. была напечатана в С.-Альбанс одно из выдающихся сочинений по А., под заглавием: «Rhetorica nova Gulielmi de Saona», в котором с особой ясностью изложены простейшие действия А. или «Алгоризма», как еще называли греки А-у. Почти одновременно, в 1484 году, вышло прекрасное сочинение итальянца Лукаса де Бурго: «Summa de Arithmetica, Geometria, Proportioni et Proportionalita», в котором А. посвящен длинный обзор состояния этой науки до конца XV-го столетия., С начала XVI-го века появляются все чаще мемуары по А., обогащенные новыми сведениями, сравнительно с арабскими и унаследованными от Диофанта. Так, в 1686 г. вводятся десятичные дроби Симоном Стевином – весьма существенное прибавление к так называемому Алгоризму. Голландец Альберт Жирар почти одновременно распространяет наше письменное счисление на десятичные дроби, а англичанин Райт (Wright) в 1616 г. заключил даже в скобки сложные знаки; в следующем же году, знаменитый Непер (Napier) доводить знакоположение А. до нынешнего ее состояния.
Одной из самых интересных страниц истории А. должно признать вопрос о счислении. Сведения, собранные различными исследователями этого важного вопроса, сводятся к тому заключению, что почти у всех народов, спокон веков, была принята система десятеричного счисления. Джордж Пикок (Peacock) проф. кембриджского универ., приводит в своей статье об А. для «Encyclopedia metropolitana of pure mathematics» прекрасные данные о системах счисления даже у диких племен, и там мы встречаем десять различных слов у каждого наречия, которые служат основанием счисления.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
Арифметика
Арифметика (от греч. слов ariJmoV – число и tecnh – искусство) – часть математики, которая занимается изучением свойств определенных конкретных величин; в более тесном смысле А. есть наука о числах, выраженных цифрами, и занимается действиями над числами. А. можно делить на низшую и высшую, понимая под первой четыре основных действия с целыми и дробными числами и их практические применения, учение о пропорциях, возвышение в степень, извлечение квадратных и кубичных корней и решение численных уравнений, между тем как высшая А. занимается исследованием свойств чисел вообще, деления целых чисел на части, непрерывных дробей и пр. – А. находится в тесной, неразрывной связи с алгеброй, которую Ньютон называл «Общей арифметикой»; вот почему действия – возвышение в степени, извлечение корней и решения численных уравнений, относящиеся собственно к алгебре, должны войти в состав А., рассматривая последнюю как техническую часть алгебры. Рассматривая возвышение в степень, как частный случай умножения и принимая во внимание, что при извлечении корней и решении численных уравнений мы производим какое-либо из четырех основных действий, некоторые математики силились ограничить А. лишь основными действиями, а именно: сложения, вычитания, умножения и деления, но подобное ограничение несправедливо, так как три второстепенных действия А. производятся в известном порядке, который составляет существенную часть каждого действия. Многие писатели затруднялись разграничением алгебры от А.; так как первая занимается теми же действиями, что и вторая. Приняв однако в соображение, что алгебра доказывает те правила, которыми А. руководствуется, и что алгебра имеет предметом преобразование действий одних в другие так, чтобы А. оставалось лишь исполнение самых простейших действий, можно таким образом утверждать, что алгебра есть обобщенная А., которая, в свою очередь, есть наука о числах и свойствах вполне определенных величин.
История А.
Трудно сказать что-либо положительное о времени и месте рождения А. Многочисленные исследователи этого вопроса приписывают открытие истин А. различным народностям и приурочивают его к разным эпохам. Историк Иосиф Флавий («Древняя иудея», кн. I, гл. 8) утверждает, что еще праотец Авраам, в пребывании своем в Египте, во время голода, постигшего Ханаанскую землю, первый обучил египтян арифметике и астрономии. Платон (in Phaedro)и Диоген Лаэрций (in Proemio) тоже считают Египет колыбелью А. и геометрии. Они говорят, что числа, числительное искусство и геометрия ниспосланы египтянам от их бога Тевта (Theut) или Тота (Thot), владевшего торговлей и числами, подобно греческому Меркурию. Другие, более позднейшие, исследователи полагают, что А. открыта халдейцами, а Страбон в своей «Географии», говорит, что современники его приписывали изобретение А. финикиянам, так как они первые стали производить обширную торговлю, которая, без сомнения, требовала некоторых познаний в счетной науке. Оставляя однако в стороне подобные догадки, достоверным можно принять относительно исторического происхождения А., что люди начали считать с того самого отдаленного времени, когда, приходя во взаимное столкновение между собою, они стали группироваться в общества, ибо, без сомнения, они знали число членов своих семейств, считали свои стада и т. п. Таким образом, начало А. должно отнести к эпохе первого проявления гражданского строя среди людей; что же касается усовершенствования первобытных понятий о счислении, то они должны быть отнесены к гораздо позднейшим временам. Первыми историческими математиками, сознательно излагавшими А., как науку, должны быть признаны древние греки, а именно: Евклид (7 – 10 книги его «Элементов»), Диофант – математик IV ст. до Р. Х. (оставил по себе 13 трактатов, из которых до нас дошло 6) и Никомах, живший в I веке до Р. Х. В их сочинениях мы встречаемся с двумя различными терминами: Logistikh – логистика, так наз. «числительное искусство» и ariJmhtekh – арифметика – наука о свойствах чисел; очевидно, что древние греки различали особенными именами практическую часть А. от теоретической. Греки, обогатив А., заимствованную ими, вероятно, от египтян, передали ее через Александрийскую школу римлянам и арабам, от которых она начинает проникать повсюду лишь в эпоху Возрождения. Открытие книгопечатания оказало немаловажную услугу распространению первоначальных истин А. Насколько медленно проникали во всеобщее сознание эти истины до эпохи Возрождения, видно из того факта, что даже у арабов, ревностных носителей «математический цивилизации», всякий знавший едва четыре основных действия А., считался ученым математиком; при всем том число подобных ученых было весьма ограничено. С открытия книгопечатания стали чаще появляться монографии и трактаты по А., которые хотя не вносили ничего нового в А., унаследованную от арабов и греков, но вместе с тем получался толчок к усовершенствованию древних методов. В 1478 г. была напечатана в С.-Альбанс одно из выдающихся сочинений по А., под заглавием: «Rhetorica nova Gulielmi de Saona», в котором с особой ясностью изложены простейшие действия А. или «Алгоризма», как еще называли греки А-у. Почти одновременно, в 1484 году, вышло прекрасное сочинение итальянца Лукаса де Бурго: «Summa de Arithmetica, Geometria, Proportioni et Proportionalita», в котором А. посвящен длинный обзор состояния этой науки до конца XV-го столетия., С начала XVI-го века появляются все чаще мемуары по А., обогащенные новыми сведениями, сравнительно с арабскими и унаследованными от Диофанта. Так, в 1686 г. вводятся десятичные дроби Симоном Стевином – весьма существенное прибавление к так называемому Алгоризму. Голландец Альберт Жирар почти одновременно распространяет наше письменное счисление на десятичные дроби, а англичанин Райт (Wright) в 1616 г. заключил даже в скобки сложные знаки; в следующем же году, знаменитый Непер (Napier) доводить знакоположение А. до нынешнего ее состояния.
Одной из самых интересных страниц истории А. должно признать вопрос о счислении. Сведения, собранные различными исследователями этого важного вопроса, сводятся к тому заключению, что почти у всех народов, спокон веков, была принята система десятеричного счисления. Джордж Пикок (Peacock) проф. кембриджского универ., приводит в своей статье об А. для «Encyclopedia metropolitana of pure mathematics» прекрасные данные о системах счисления даже у диких племен, и там мы встречаем десять различных слов у каждого наречия, которые служат основанием счисления.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225