ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Мог бы Белый Король установить, кто виновен, если бы Белый Рыцарь сказал ему, что на суде лгали ровно двое из подсудимых, и указал тех, кто лгал? Нет. Предположим, например, что Белый Рыцарь сказал Белому Королю: "A говорил правду, B и C лгали". Тогда кем бы ни был тот, кого A назвал виновным, он должен был бы быть виновным (ведь A говорил правду), а B и C оба лгали и обвиняли A (или, быть может, B обвинял C, а C обвинял A). С другой стороны, A мог обвинять C, а подсудимые B и C могли бы обвинять A, тогда виновен был бы C. Таким образом, если бы A был единственным подсудимым, сказавшим на суде правду, то ни B, ни C не могли бы быть виновными. Аналогичным образом, если бы B был единственным подсудимым, сказавшим на суде правду, то ни A, ни C не могли бы быть виновными, а если бы правду на суде сказал только C, то ни A, ни B не могли бы быть виновными. Следовательно, если бы Белый Рыцарь сообщил Белому Королю, что на суде сказал правду только один из подсудимых (либо A, либо B, либо C), то Белый Король не смог бы установить виновного. Значит, Белый Рыцарь не говорил Белому Королю, что правду сказал на суде только один из подсудимых (либо A, либо B, либо C).
Мог Белый Рыцарь сообщить Белому Королю, что все трое подсудимых говорили на суде правду? Нет, это невозможно, так как виновный заведомо лгал (ведь он обвинял кого-то из двух других подсудимых, тогда как те были невиновны).
Остается единственно возможный вариант: на суде лгал ровно один подсудимый. Но если лгал ровно один подсудимый, то именно он и должен быть виновен, так как если бы солгал кто-нибудь из невиновных, то давших ложные показания было бы двое: один невиновный и виновный. Итак, Белый Король мог услышать от Белого Рыцаря один из трех вариантов.
Вариант 1. A лгал, B говорил правду, C говорил правду.
Вариант 2. A говорил правду, B лгал, C говорил правду.
Вариант 3. A говорил правду, B говорил правду, C лгал.
Теперь нам ясно, каким образом Белый Король узнал, кто был виновен, но каким образом мы можем установить, какой из трех вариантов Белый Рыцарь сообщил Белому Королю? Как известно, Шалтай-Болтай либо спросил Белого Рыцаря, были ли ложны показания двух подсудимых подряд, либо были ли истинны показания двух подсудимых подряд. Первый вопрос не имел бы смысла (так как из трех показаний только одно ложное), поскольку на него Белый Рыцарь ответил бы отрицательно и это не позволило бы Шалтаю-Болтаю установить, какой из трех вариантов был сообщен Белому Королю Белым Рыцарем. Значит, Шалтай-Болтай спросил, были ли истинны показания двух каких-нибудь подсудимых подряд.
Если в ответ на его вопрос Белый Король сказал "да", то ШалтайБолтай исключил бы вариант 2, но так и не смог бы установить виновного. Но раз Шалтай-Болтай определил, кто виновен, то это означает, что в ответ на его вопрос Белый Рыцарь ответил "нет". Такой ответ позволил Шалтаю-Болтаю понять, что вариант 2 единственно возможный.
Следовательно, виновен подсудимый C.
80. Следующий судебный процесс. Это очень простая задача.
Так как A сказал правду и обвинил одного из двух других подсудимых, то либо B, либо C должен быть виновен.
Следовательно, A невиновен. Если бы каждый из подсудимых обвинял не того, на кого он указал на самом деле, а другого, то B сказал бы правду. Так как мы знаем, что A невиновен, то на процессе B обвинил C. Следовательно, C виновен.
81. Судебный процесс, следующий за следующим. Так как A говорил правду и обвинял либо B, либо C, то либо B, либо C виновен, а A невиновен.
Белый Рыцарь сказал Белому Королю, что C либо лгал, либо говорил правду. Если бы Белому Королю было сказано, что C лгал, то Белый Король не мог бы установить, кто из трех подсудимых виновен, так как либо C мог быть виновным и ложно обвинять A (или B), либо B мог быть виновным и C мог ложно обвинять A. Таким образом, если известно, что C лгал, то не существует способа, позволяющего установить, кто виновен: B или C. С другой стороны, если известно, что C говорил правду, то он не мог обвинять A (поскольку тот невиновен). Следовательно, C обвинял B, а так как C говорил правду, B должен быть виновен. Таким образом, Бармаглот должен был сказать Белому Рыцарю, что C говорил правду.
Тогда Белый Рыцарь смог бы установить, что виновным должен быть B.
82. Еще один судебный процесс. Как и в предыдущей задаче, поскольку A говорил правду и обвинял одного из двух подсудимых, A должен быть невиновен. Если Белый Рыцарь узнал от Бармаглота, что C говорил правду, то без всякой дополнительной информации Белый Рыцарь знал бы, что B виновен (как мы видели в решении предыдущей задачи). Но, как известно, Белый Рыцарь не мог без дополнительной информации определить, кто из трех подсудимых виновен.
Следовательно, Бармаглот должен был сказать ему, что C лгал. Затем Белый Рыцарь узнал, кого обвинял подсудимый C, и это позволило ему узнать, кто виновен. Если бы Белый Рыцарь узнал от Бармаглота, что C обвинял подсудимого A, то Белый Рыцарь не смог бы определить, кто виновен: B или C.
Именно поэтому Белому Рыцарю так важно было услышать от Бармаглота, что C обвинял подсудимого B: это означало, что B должен быть невиновен (так как C лгал), а поскольку A также невиновен, то виновен должен быть C.
83. Еще один случай. Существует 8 вариантов показаний, которые дали в ходе процесса подсудимые A, B и C.
Действительно, A мог выступить с двумя вариантами показаний, каждый из которых мог сочетаться с двумя вариантами показаний подсудимого B, поэтому существуют 4 варианта показаний подсудимых A и B. (Перечислим эти варианты: 1) A и B оба признали себя виновными: 2) A признал себя виновным, B заявил о своей невиновности; 3) A заявил о своей невиновности, B признал себя виновным; 4) A и B оба заявили о своей невиновности.) Каждый из четырех вариантов показаний подсудимых A и B приходится на два варианта показаний подсудимого C, поэтому общее число показаний подсудимых A, B и C достигает 8.
В каждом из 8 вариантов показаний подсудимых виновным (по крайней мере в принципе) может быть любой из троих.
Следовательно, общее число вариантов всего "расклада"
(под "раскладом" мы условимся понимать набор из показаний каждого их троих подсудимых и его фактической виновности или невиновности) достигает 24. Разумеется, если бы мы знали, какой из 24 вариантов соответствует действительности, то нам было бы известно, кто лгал и кто говорил правду. Составим поэтому сводную таблицу всех 24 вариантов расклада. Она понадобится нам для решения не только этой задачи, но и одной из следующих задач. Все необходимые пояснения приведены после таблицы.
--------------------- Случай Что сказали подсудимые A виновен B виновен C виновен - -------------------- A: Я невиновен Л И И 1 B: Я невиновен И Л И C: A невиновен Л И И - -------------------- A: Я невиновен Л И И 2 B: Я невиновен И Л И C: A виновен И Л И - -------------------- A:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44