ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


И тот стал увлеченно показывать сделанные им преобразования формулы Пифагора.
Из выражения для «y», где в числителе разность квадратов a и b, ясно, что хотя бы одна из этих величин не может быть четной, иначе «y» не будет целым числом. Случай с иррациональными числами рассмотрен в последующем примечании.
Для возрастающих коэффициентов a и b можно составить таблицу, из которой вытекает ряд закономерностей, в частности формулировка новой теоремы. Нечетный катет простейших пифагоровых троек в целых числах разлагается на два взаимно простых сомножителя, квадраты которых соответственно равны сумме или разности гипотенузы и второго катета, то есть в дополнение к теореме Пифагора: a\2 = z — y; b\2 = z + y.
Декарт внимательно выслушал Пьера Ферма, взял в руки составленную им таблицу, лицо его из грозного стало сосредоточенным, потом он горько усмехнулся:
— Друг мой, боюсь разочаровать вас, но стоило ли вам вкладывать столько труда в «изобретение колесницы», известной еще при фараонах?
— Вы правы, Рене, очевидно, при фараонах жрецы бога Тота знали эти ряды, но разве не наш долг вернуть людям утраченные знания?
— Вы не поняли меня, друг мой. Я применил метафору о колеснице, имея в виду, что она известна была и древним римлянам, даже в наше время на ее основе созданы кареты. Просто вам нет надобности применять свой математический дар для вычисления сторон приевшихся всем прямоугольников, поскольку древние оставили нам изящные формулы, дающие значения всех возможных пифагоровых троек. — И он размашисто написал на листе несколько формул. — Их связывают чуть ли не с Платоном, их можно найти в X книге «Начал» Евклида.
— Простите, что я вступаю в ваш высоконаучный разговор, почтенные знатоки чисел, — вмешался звездочет, — но арабской науке действительно известны эти древние формулы, правда, в несколько другом написании. Однако, к сожалению, до нас не дошел их вывод. Впрочем, в том, что они дают верный результат, я имел, по воле аллаха, возможность убедиться всякий раз, когда их применял, подобно тому, как это делал сам Диофант.
Пьер Ферма нахмурился, пристально глядя на свои и написанные Декартом формулы:
— Они выводятся очень просто, почтенные господа, из тех самых выражений, которые позволили мне составить таблицу. — И Пьер Ферма показал, как удивительно простым способом можно получить эти древние формулы.
— Не могу отказать вам в математическом остроумии, но нахождение вывода старых формул не может подняться до значения самих этих формул. Так что я не вижу, к сожалению, смысла в вашей умственной расточительности ради повторения давно человечеством пройденного.
Пьер Ферма покраснел, потом побледнел, пронизывающе смотря на составленную им таблицу рядов, которую в эту минуту изучал арабский звездочет.
— Простите мне во имя аллаха, мои высокочтимые гости, что я рискую обратить ваше внимание на то, что в составленной молодым гостем таблице я вижу весьма примечательные особенности, которые, надо думать, он подметил и обосновал. Кроме того, можно увидеть, что тройки, вычисленные по древним формулам, не окажутся, как в таблице господина Пьера Ферма, простейшими числами. Произвольно задаваясь величинам m и n, мы получим после вычислений хаотические, беспорядочные, как россыпь разноцветных камней, значения всевозможных прямоугольных треугольников, отнюдь не способствующих выявлению законов их построения.
— Вы правы, уважаемый Мохаммед эль Кашти, таблица троек действительно дает возможность установить некоторые зависимости как в вертикальных рядах, так и в рядах, соседствующих по горизонтали. — И он познакомил слушателей с тем, что открыл. По просьбе арабского ученого особенно остановился Пьер Ферма на выборе коэффициента a и b в своих формулах.
Все значения сторон треугольников с возрастанием ряда изменяются по арифметической прогрессии, показатель которой для y — постоянен и равен 4, а для x и z увеличивается с порядковым номером ряда и порядкового номера тройки в вертикальном ряду и равен 4 (b + i — 1), где i — порядковый номер тройки в ряду.
— Вас интересует, уважаемый Мохаммед эль Кашти, случай, когда коэффициенты a и b содержат общий множитель v21? — И он показал с убедительной простотой, что в этом случае получающиеся тройки будут повторять все первые тройки соседних по горизонтали рядов.
— Вы убедили меня, почтенный знаток и поэт чисел. Видит аллах, с каким благоговением я стараюсь вникнуть в найденные вами числа и мудро расставленные по клеткам таблицы, кажущейся мне поистине волшебной. Но я покажу почтенным господам, какие тайны хранит в себе эта простенькая таблица.
— Что же вы обнаружили в ней, уважаемый Мохаммед эль Кашти? Разве я не все понял в собственной работе?
— Конечно, не все, ибо все понятно лишь одному всемогущему аллаху! Но достаточно прикоснуться к математическому сокровищу, чтобы обнаружить в нем…
— Что же? Что? — нетерпеливо торопил арабского звездочета Пьер Ферма.
— Благословенное аллахом золотое сечение! 8 единиц рассекаются на 5 и 3, 13 — на 8 и 5! А эти цифры стоят в таблице поблизости, как и в орнаменте!
Декарт скептически пожал плечами и поморщился. Араб воскликнул:
— Видит аллах справедливый, что вы напрасно так холодны, господин Картезиус! В этой премудрой таблице египетских рядов, как в бездонном колодце, можно черпать сокровища знаний.
— Я не хочу отказывать древним в важных познаниях, но я не вижу причин искать закономерности построения треугольников, будучи не уверен в их практической ценности, поскольку величины сторон ограничены такой условностью, как целочисленность.
— О многочтимый господин Картезиус! Я с почтительным вниманием изучаю ваши латинские труды по философии, стараясь вникнуть в глубину ваших мыслей, но позвольте возразить вам, не оспаривая вашего права на высказанное мнение.
— Пожалуйста, прошу вас, почтенный Мохаммед эль Кашти.
— По вашему определению, господин Картезиус, человек начал существовать как человек, лишь обретя способность мыслить, а это произошло тогда, когда он стал считать по пальцам, определять, сколько плодов он сорвал, сколько дичи принес, сколько членов его семьи или племени должны его добычу разделить между собой. По-латыни, как вы знаете, «вычисление — калькуляция» происходит от слова calculus, что означает «камешек», число камешков могло быть только целым. И в нашей жизни, начиная от числа людей, быков, кораблей, домов и окон в них, кончая числом звезд в созвездиях, — все это только целые числа. Природа по воле аллаха не знает дробей.
— Но при чем тут закон Природы, созданной всевышним, и прямоугольные треугольники? — с вызовом спросил французский философ.
— Величайшая тайна творения, уважаемый мною господин Картезиус, как я верю и убежден, заключена в том, что первородный закон Природы и ее творца до необычайности прост, не менее прост, чем открытый Пифагором закон прямоугольного треугольника.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173