разразилась мировая война (еще та, первая), и американское правительство приняло решение взорвать станцию!.. Так и было сделано, ибо уж очень там стояло мощное (и очень новое) оборудование, которым, полагали власти, немедленно кинулись бы пользоваться… шпионы Германии. На сегодня остался лишь поселок Теслы — городок на 2000 жителей, которые бы работали на станции и обслуживали ее.
И Мировой Системе, и самому Тесле помешала первая мировая война. Она же заставила энтузиастов марсианской версии надолго забыть о космических сигналах и о братьях по разуму. А вот идущее следом поколение исследователей продолжило работу. Нет, не над поиском ВЦ (аббревиатура, которой пользуются астрономы и уфологи: Внеземные Цивилизации), а над исследованием способов радиопередачи в различной среде.
Оливер Хэвисайд обнаружил эффект так называемого «эха» (он теперь очень широко используется в телевидении и, конечно, радиовещании). Ионосфера Земли — верхний слой атмосферы, состоящий из заряженных частиц. Мы касались ионосферы в главе о Подкаменной Тунгуске и Тунгусском диве. Так вот именно этот слой служит неким «зеркалом», отражающим посланные с Земли сигналы. Часть сигнала, как и положено, проходит по назначению (если, к примеру, мы направим радиолуч точно на Марс), другая часть, как известно, поглощается (до сих пор мы не знаем энергетического излучения, которое нисколько бы не поглощалось средой: закон сохранения), а третья — отражается слоем. Именно этот эффект отражения ионосферой радиоволн и назвал Хэвисайд «эхом». Про воздух атмосферы никто не сказал бы, что он «отражает», настолько мизерны значения коэффициентов отражения воздушной среды. В ионосфере же отражение возникает за счет заряженности слоя. Ну, да сейчас не о том речь.
Знал об этом эффекте и норвежец Иорген Хальс. Загадка же его открытия в 1927 году состояла вот в чем. Он посылал станцией в Эйндховене коротковолновый импульс, а принимал — двойное эхо! Сам инженер, и далеко не тугодум, Хальс сообразил бы (он и сообразил!), что второе отражение принадлежит и второму слою. Это был, допустим, верхний слой ионосферы. Но разница между повтором сигнала первым и вторым заключалась: 1) в неповторяемости временных интервалов, спустя которые приходил второй сигнал; 2) в искаженном характере второго сигнала (словно он за этот промежуток времени успевал кем-то промодулироваться). Если читатель не знает, поясним, что опытный радист (да и просто радист) без труда определит, что первый сигнал послан одним автором, а второй — другим, несмотря на одинаковое, один к одному, содержание. «Почерк» радиста мы знаем еще по фильмам о Резиденте и Штирлице. Вот именно «почерк» второго сигнала был иным!
Побегав по инстанциям со своей загадкой, Иорген Хальс нашел наконец человека, который заинтересовался его открытием, и в 1928 году Карл Штермер занялся проблемой всерьез. Станция в Эйндховене передавала сигнал, а две другие станции, находившиеся на удалении, принимали. Эхо опять было двойным, и опять интервалы между первым и вторым отражением каждого сигнала различались по нерасшифрованной зависимости. Для примера возьмем эти интервалы с потолка: шесть, двенадцать, пять, три, десять секунд и так далее. И опять второе отражение было «передразнивающим»!
Явление на следующий год подтвердили два француза, но объяснить тоже не смогли.
Хальс предположил невероятное: верхний слой ионосферы, от которого приходит второе отражение, с бешеной скоростью меняет свое положение (то есть толщина ионосферного отражающего слоя постоянно меняется безо всякого закона или по закону, который трудно математически описать). Это даже пульсацией нельзя было назвать: в каждый новый момент верхний слой, получалось, находился на непредсказуемом месте. С чего бы ионосфере так изменяться?
Карл Штермер объяснил явление проще: ионосфера подвергается непрерывному и меняющемуся столь же непрерывно и непредсказуемо влиянию солнечной радиации. Действительно, солнечный свет, кажущийся глазу ровным и постоянным, на самом деле есть поток энергии, у которого лишь амплитуда основного «сигнала» есть средне-постоянная величина. Но ведь даже в коротком видимом диапазоне волн (400 — 800 нанометров) «сигнал» светила промодулирован на каждой частоте (длине волны) своими возмущениями, касающимися только этой частоты. А частот в солнечном спектре — бесчисленное множество… Объяснение было очень и очень логичным с точки зрения возможности и физических условий второго отражения. Но К. Штермер забыл об одной важной детали: как могло Солнце «передразнивать» земной радиосигнал-импульс? Одного понятия неупорядоченности, «первобытного» хаоса здесь явно было мало.
Как ни странно, загадка продержалась… аж до самого 1973 года! Вопрос был, как говорится, поставлен и забыт.
Льюнен, британский астрофизик, в 1973 году натолкнулся на работу Карла Штермера, и она его увлекла. Хотя ведь отражение ионосферы — это скорее проблема физиков, занимающихся чистой связью… Наверное, о чем-то уже догадался Льюнен, если решил не только повторить эксперимент Штермера, но и построить своеобразный график. Какой? Ведь по осям графика можно было располагать какие угодно величины: к примеру, измерять атмосферное давление и откладывать на протяжении восьми часов по одной оси, а по другой — время прихода второго сигнала… Нет. Льюнен сделал очень просто: одну из осей занял… порядковыми номерами импульсов! Ну а другую, естественно, интервалами, через которые приходил второй отраженный сигнал. Правда, нет сведений, «дразнился» ли космос на этот раз.
Над этим можно долго смеяться, но у астронома получилась… карта звездного неба Северного полушария Земли!
Пораженный в самое сердце (это же карта звездного неба!), астрофизик, конечно же, немедленно опубликовал свое открытие. Но прежде сравнил положение всех звезд и нашел, что оно соответствует не 1973-му, не 973-му, и даже не минус 973-му году (в смысле — до нашей эры), а наблюдалось в Северном полушарии 13 тысяч лет назад!
У Льюнена одна звезда выбивалась из стройного ряда, соответствующего времени, отстоящему от нас на 13000 лет: это была звезда Эпсилон Волопаса. Сам факт мог означать только одно: значит, во второе отражение вмешалась внеземная цивилизация (ВЦ) и каким-то образом «промодулировала» время второго отражения. То есть она сама индуцировала или отражала этот сигнал (оттого и передразнивающий эффект: конечно, инопланетянам, как говорится, сам Бог велел «говорить» с легким акцентом), посылая его на Землю с «наведенной» в нем информацией. В общем-то, все проще простого… Но ведь разница в 13 тысяч лет… Неужели столько времени вокруг Земли вращался искусственный спутник с разумными существами?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
И Мировой Системе, и самому Тесле помешала первая мировая война. Она же заставила энтузиастов марсианской версии надолго забыть о космических сигналах и о братьях по разуму. А вот идущее следом поколение исследователей продолжило работу. Нет, не над поиском ВЦ (аббревиатура, которой пользуются астрономы и уфологи: Внеземные Цивилизации), а над исследованием способов радиопередачи в различной среде.
Оливер Хэвисайд обнаружил эффект так называемого «эха» (он теперь очень широко используется в телевидении и, конечно, радиовещании). Ионосфера Земли — верхний слой атмосферы, состоящий из заряженных частиц. Мы касались ионосферы в главе о Подкаменной Тунгуске и Тунгусском диве. Так вот именно этот слой служит неким «зеркалом», отражающим посланные с Земли сигналы. Часть сигнала, как и положено, проходит по назначению (если, к примеру, мы направим радиолуч точно на Марс), другая часть, как известно, поглощается (до сих пор мы не знаем энергетического излучения, которое нисколько бы не поглощалось средой: закон сохранения), а третья — отражается слоем. Именно этот эффект отражения ионосферой радиоволн и назвал Хэвисайд «эхом». Про воздух атмосферы никто не сказал бы, что он «отражает», настолько мизерны значения коэффициентов отражения воздушной среды. В ионосфере же отражение возникает за счет заряженности слоя. Ну, да сейчас не о том речь.
Знал об этом эффекте и норвежец Иорген Хальс. Загадка же его открытия в 1927 году состояла вот в чем. Он посылал станцией в Эйндховене коротковолновый импульс, а принимал — двойное эхо! Сам инженер, и далеко не тугодум, Хальс сообразил бы (он и сообразил!), что второе отражение принадлежит и второму слою. Это был, допустим, верхний слой ионосферы. Но разница между повтором сигнала первым и вторым заключалась: 1) в неповторяемости временных интервалов, спустя которые приходил второй сигнал; 2) в искаженном характере второго сигнала (словно он за этот промежуток времени успевал кем-то промодулироваться). Если читатель не знает, поясним, что опытный радист (да и просто радист) без труда определит, что первый сигнал послан одним автором, а второй — другим, несмотря на одинаковое, один к одному, содержание. «Почерк» радиста мы знаем еще по фильмам о Резиденте и Штирлице. Вот именно «почерк» второго сигнала был иным!
Побегав по инстанциям со своей загадкой, Иорген Хальс нашел наконец человека, который заинтересовался его открытием, и в 1928 году Карл Штермер занялся проблемой всерьез. Станция в Эйндховене передавала сигнал, а две другие станции, находившиеся на удалении, принимали. Эхо опять было двойным, и опять интервалы между первым и вторым отражением каждого сигнала различались по нерасшифрованной зависимости. Для примера возьмем эти интервалы с потолка: шесть, двенадцать, пять, три, десять секунд и так далее. И опять второе отражение было «передразнивающим»!
Явление на следующий год подтвердили два француза, но объяснить тоже не смогли.
Хальс предположил невероятное: верхний слой ионосферы, от которого приходит второе отражение, с бешеной скоростью меняет свое положение (то есть толщина ионосферного отражающего слоя постоянно меняется безо всякого закона или по закону, который трудно математически описать). Это даже пульсацией нельзя было назвать: в каждый новый момент верхний слой, получалось, находился на непредсказуемом месте. С чего бы ионосфере так изменяться?
Карл Штермер объяснил явление проще: ионосфера подвергается непрерывному и меняющемуся столь же непрерывно и непредсказуемо влиянию солнечной радиации. Действительно, солнечный свет, кажущийся глазу ровным и постоянным, на самом деле есть поток энергии, у которого лишь амплитуда основного «сигнала» есть средне-постоянная величина. Но ведь даже в коротком видимом диапазоне волн (400 — 800 нанометров) «сигнал» светила промодулирован на каждой частоте (длине волны) своими возмущениями, касающимися только этой частоты. А частот в солнечном спектре — бесчисленное множество… Объяснение было очень и очень логичным с точки зрения возможности и физических условий второго отражения. Но К. Штермер забыл об одной важной детали: как могло Солнце «передразнивать» земной радиосигнал-импульс? Одного понятия неупорядоченности, «первобытного» хаоса здесь явно было мало.
Как ни странно, загадка продержалась… аж до самого 1973 года! Вопрос был, как говорится, поставлен и забыт.
Льюнен, британский астрофизик, в 1973 году натолкнулся на работу Карла Штермера, и она его увлекла. Хотя ведь отражение ионосферы — это скорее проблема физиков, занимающихся чистой связью… Наверное, о чем-то уже догадался Льюнен, если решил не только повторить эксперимент Штермера, но и построить своеобразный график. Какой? Ведь по осям графика можно было располагать какие угодно величины: к примеру, измерять атмосферное давление и откладывать на протяжении восьми часов по одной оси, а по другой — время прихода второго сигнала… Нет. Льюнен сделал очень просто: одну из осей занял… порядковыми номерами импульсов! Ну а другую, естественно, интервалами, через которые приходил второй отраженный сигнал. Правда, нет сведений, «дразнился» ли космос на этот раз.
Над этим можно долго смеяться, но у астронома получилась… карта звездного неба Северного полушария Земли!
Пораженный в самое сердце (это же карта звездного неба!), астрофизик, конечно же, немедленно опубликовал свое открытие. Но прежде сравнил положение всех звезд и нашел, что оно соответствует не 1973-му, не 973-му, и даже не минус 973-му году (в смысле — до нашей эры), а наблюдалось в Северном полушарии 13 тысяч лет назад!
У Льюнена одна звезда выбивалась из стройного ряда, соответствующего времени, отстоящему от нас на 13000 лет: это была звезда Эпсилон Волопаса. Сам факт мог означать только одно: значит, во второе отражение вмешалась внеземная цивилизация (ВЦ) и каким-то образом «промодулировала» время второго отражения. То есть она сама индуцировала или отражала этот сигнал (оттого и передразнивающий эффект: конечно, инопланетянам, как говорится, сам Бог велел «говорить» с легким акцентом), посылая его на Землю с «наведенной» в нем информацией. В общем-то, все проще простого… Но ведь разница в 13 тысяч лет… Неужели столько времени вокруг Земли вращался искусственный спутник с разумными существами?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111