ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

И, тем не менее глубокая аналогия, существующая между спектрами различных элементов, свидетельствует об их единой природе и позволяет надеяться, что метод, увенчавшийся столь блестящими успехами в случае атома водорода, может быть обобщен на случай атомных систем, состоящих из большого числа электронов.
В частности, следуя теории Бора, можно предложить, например, следующий, правда весьма приближенный, метод решения этой проблемы. Пусть имеем некоторый атом с атомным номером, равным N. Будем считать, что ядро и N–1 электронов образуют систему, эквивалентную некоторому эффективному ядру, в поле которого движется N-й электрон. Иначе говоря, влияние ядра и всех остальных N–1 электронов сводится в первом приближении к созданию некоторого эффективного кулонова поля. Переходы N-го электрона из одного стационарного состояния в другое и определяют оптический спектр этого элемента. Таким образом, для спектральных термов мы получаем выражения, подобные тем, которые были получены в случае водорода. Это и объясняет, правда довольно грубо, наблюдаемую на опыте аналогию между оптическими спектрами различных элементов.
Теория Бора позволила также понять происхождение рентгеновских спектров, являющихся, подобно оптическим спектрам, характеристикой внутриатомной структуры. Не желая вдаваться в детальное обсуждение этого вопроса, отметим лишь, что идеи Бора позволили понять природу одного из основных законов, которому подчиняются рентгеновские спектры атомов – закона Мозли. Подобно оптическим спектрам, рентгеновские спектры также делятся на серии, общая структура которых одинакова для всех химических элементов. После того как фон Лауэ, Фридрих и Книппинг в 1912 г. открыли явление дифракции рентгеновских лучей в кристаллах, позволившее точно определить длину волн рентгеновского излучения, молодой английский ученый Мозли обратил внимание на тот факт, что смещение рентгеновских спектров различных элементов на шкале частот с достаточной точностью прямо пропорционально квадрату их атомного номера. Иначе говоря, частота какой-либо определенной линии некоторого элемента в четыре раза меньше частоты соответствующей линии элемента с удвоенным атомным номером. Из выражения для частот, полученного с помощью теории Бора, легко видеть, что, во всяком случае в первом приближении, частоты всех линий рентгеновских спектров действительно должны быть примерно пропорциональны квадрату атомного номера элемента. Закон Мозли нашел свое объяснение, и таким путем теория атома Бора оказалась применимой во всех областях спектра.
3. Развитие теории Бора. Теория Зоммерфельда
В своем математическом выражении теория Бора обладала одним серьезным недостатком. Действительно, даже в наиболее простом случае атома водорода, она позволяла найти энергию стационарных состояний лишь для чисто кругового движения. Причина этого заключалась в отсутствии необходимых методов квантования, поскольку метод квантования действия, предложенный Планком, годился лишь для одномерного движения. Поэтому для дальнейшего развития теории Бора необходимо было найти методы квантования, применимые в общем случае многомерного движения.
Эта задача была решена в 1916 г. почти одновременно Вильсоном и Зоммерфельдом. Они обратили внимание на то, что все механические системы, рассматриваемые в квантовой механике, относятся к классу квазипериодических систем с разделяющимися переменными. Системы такого рода характеризуются периодическим изменением всех переменных, хотя величины этих периодов, вообще говоря, отличны друг от друга. Более того, надлежащим выбором этих переменных интеграл действия удается разбить на ряд интегралов, каждый из которых зависит только от одной переменной. Проводя в каждом из этих интегралов интегрирование по полному периоду соответствующей переменной и приравнивая каждый из них произведению постоянной Планка на целое число, получаем, очевидно, условия квантования для случая систем со многими степенями свободы. В частном случае одной степени свободы они переходят, как легко видеть, в условие квантования Планка.
Метод квантования Вильсона – Зоммерфельда, который мы только что описали в общих чертах, позволяет в принципе разрешить все задачи, стоящие перед теорией атома Бора. Практически же в случае более или менее сложного атома задача, как и прежде, остается, строго говоря, неразрешимой. Но это связано уже не с отсутствием необходимых правил квантования, а с математическими трудностями, возникающими при решении уравнений движения.
Зоммерфельд использовал предложенный им метод для решения более сложных задач теории атома, которые оказались не под силу ранней теории Бора. Прежде всего, он показал, что учет эллиптичности электронных орбит в атоме водорода не изменяет выражений для энергии различных стационарных состояний и, следовательно, абсолютно не сказывается на результатах, полученных Бором. Далее он показал, что более строгий учет движения электронов приводит к замене формул типа Бальмера другими, более точно описывающими истинное расположение спектральных линий оптического спектра и совпадающими с найденными ранее эмпирическими формулами Ридберга и Ритца.
Но наибольший успех завоевала, разумеется, его теория тонкой структуры линий. Тщательное изучение спектра водорода, проведенное с помощью спектрографов, обладающих высокой разрешающей способностью, показало, что некоторые спектральные линии оказываются не простыми, а имеют более тонкую структуру и сами состоят из ряда очень близко друг от друга расположенных линий. Однако формулы Бальмера и другие, теоретически найденные Бором, не учитывали этой тонкой структуры линий. Тогда Зоммерфельд высказал предположение, что тонкая структура спектральных линий связана с релятивистскими эффектами и для учета ее необходимо вместо уравнений Ньютона воспользоваться уравнениями релятивистской механики Эйнштейна. И действительно, проведенные им расчеты показали, что учет релятивистских поправок приводит к расщеплению некоторых энергетических уровней. Иначе говоря, некоторые спектральные термы водорода, найденные Бором, распадаются на два, хотя и очень близких между собой, но все же отличных друг от друга спектральных терма. Это, очевидно, и объясняет явление тонкой структуры. Вычисленное Зоммерфельдом значение разности частот, соответствующих линиям дублета серии Бальмера, оказалось в достаточно хорошем согласии с экспериментальными данными.
Обнадеженный этими успехами Зоммерфельд попытался также объяснить тонкую структуру рентгеновских спектров, что имело еще большее значение, чем интерпретация оптических спектров, поскольку в рентгеновских спектрах наблюдаются дублеты, легко разрешимые для всех элементов таблицы Менделеева.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72