ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Этот парадокс в самой простой форме возникает, когда человек говорит: «Я лгу». Если он лжет, то ложно, что он лжет, и, следовательно, он говорит правду; но если он говорит правду, то лжет, ибо именно это он утверждает. Противоречие поэтому неизбежно. Это противоречие упоминается св. Павлом (Тит. І, 12), который, однако, не занимался его логическими аспектами, а доказывал с его помощью порочность язычников. Такие древние головоломки математики могли отрицать как не имеющие отношения к их предмету, но вот вопрос о самом большом кардинальном или ординальном числе они отбросить не могли, а он приводил их к противоречиях. Противоречие, связанное с самым большим ординалом, было обнаружено Бурали-Форти еще до того, как я открыл свое противоречие, но в его случае дело было гораздо более сложным, и я поэтому позволил себе предположить, что в его рассуждения закралась какая-то незначительная ошибка. В любом случае его противоречие, будучи гораздо более простым, чем мое, казалось prima facie менее разрушительным. Правда, в конце концов я вынужден был признать, что оно не менее серьезно.
В «Принципах математики» я не претендовал на то, что решение найдено. Я писал в предисловии: «Издавая работу, содержащую так много нерешенных трудностей, я оправдываю это тем, что исследование не дало пока ближайшей перспективы для адекватного решения противоречия, обсужденного в главе X, и не позволило лучше разобраться в природе классов. Постоянно обнаруживаемые ошибки в решениях, какое-то время меня удовлетворявших, выявили всю серьезность проблем, которые не поддавались обманчиво правдоподобнььм теориям, порожденным поверхностным размышлением, а только скрывались под этими теориями; поэтому я счел за лучшее сформулировать трудности и не ждать того времени, когда меня убедит истинность какого-нибудь почти наверняка ошибочного учения». А в конце главы о противоречиях я сказал: «В противоречии не замешана никакая философия, оно порождено.здравым смыслом и может быть разрешено, лишь если мы отринем одно из его допущений. Только гегелевская философия, которая живет за счет противоречий, может остаться безучастной, потому что находит подобные проблемы всюду. В любом другом учении столь прямой вызов требует ответа либо признания в бессилии. К счастью, других аналогичных трудностей, насколько я знаю, „Принципы математики“ не содержат». В приложении к книге излагалось учение о типах как возможное решение. Впоследствии я убедился, что решение действительно обнаруживается с помощью этого учения, но в «Принципах математики» я пришел к его очень грубой и неадекватной форме. Мои выводы того времени выражены в последнем параграфе книги: «Резюмируем: как оказалось, специальное противоречие главы Х решается с помощью учения о типах, но имеется по крайней мере одно аналогичное противоречие, которое, вероятно, неразрешимо с помощью этого учения. Тотальность всех логических объектов, или всех суждений, предполагает, по-видимому, фундаментальную логическую трудность. Каково окончательное ее решение, я не выяснил; но поскольку она оказывает влияние на сами основы рассуждения, я очень рекомендую всем, кто изучает логику, обратить на это внимание».
Завершив «Принципы математики», я начал настойчиво искать решение парадоксов. Это было почти личным вызовом, и при необходимости я готов был потратить на них всю оставшуюся жизнь. Однако по двум причинам я отказался от этого намерения. Во-первых, проблема в какой-то момент показалась мне тривиальной, а я ненавидел все недостойное внимания и интереса. Во-вторых, сколько я ни старался, решение не приходило. На всем протяжении 1903 и 1904 годов я почти все время занимался этим вопросом, но без каких-либо признаков успеха. Первой удачей стала (весной 1905 года) теория дескрипций. Она, разумеется, не была связана с противоречиями, но позже такая связь выявилась. В конце концов мне стало совершенно ясно, что в какой-то форме учение о типах существенно важно. Не настаивая на той конкретной форме, которая придана этому учению в «Principia Mathernatica», я остаюсь при полном убеждении, что без теории типов парадоксы разрешить невозможно.
Когда я искал решение, мне казалось, что для того, чтобы решение выглядело удовлетворительным, необходимы три условия. Первое из них и абсолютно обязательное: противоречия должны исчезнуть. Второе-весьма желательное, хотя логически не непременное: решение должно оставить в неприкосновенности как можно больше математики. Третье, трудно формулируемое: решение должно, видимо, апеллировать к так называемому «логическому здравому смыслу», т. е. оказаться в конце концов таким, каким мы его и ожидали увидеть. Из этих трех условий первое, разумеется, признано всеми. Второе, однако, отвергается теми, кто считает, что значительные разделы анализа в их нынешней формулировке неверны. Третье условие не считают существенно важным те, кто довольствуется логической техникой. Профессор Куайн, к примеру, нашел системы, которые привлекают своей изобретательностью. Но их нельзя считать удовлетворительными, поскольку они, видимо, созданы ad hoc; и они отличаются от тех систем, которые представлял бы себе самый умный логик, если бы не знал о противоречиях. По этому вопросу, однако, вышло огромное количество трудной для понимания литературы, и я не буду касаться более тонких моментов.
Объясню общие принципы теории типов, не вдаваясь в трудные технические детали. Возможно, лучше всего будет начать с того, что имеется в виду под «классом». Возьмем пример из домашнего хозяйства. Допустим, в конце обеда хозяин предлагает на выбор три сладких блюда, настаивая на том, чтобы вы попробовали одно, два или все три, как вы пожелаете. Сколько-линий поведения открыто перед вами? Вы можете от всего отказаться. Это первый выбор. Вы можете выбрать что-то одно. Это можно сделать тремя различными способами, и, следовательно, перед вами еще три варианта. Вы можете выбрать два-блюда. Это также возможно сделать тремя способами. Или вы можете выбрать все три, что дает одну, последнюю, возможность. Общее число возможностей, таким образом, равно восьми, т. е. 23 Можно легко обобщить эту процедуру. Положим, перед вами п объектов и вы желаете знать, сколько путей имеется, чтобы ничего не выбрать, или что-то выбрать, или же-выбрать все п. Вы обнаружите, что число путей 2n. Если выразить это в логическом языке: класс из п-то количества элементов имеет 2n подклассов. Это суждение истинно и в том случае, когда п бесконечно. Кантор как раз и доказал, что даже в этом случае 2n больше, чем п. Применяя это, как сделал я, ко всем веща.м во Вселенной, мы приходим к заключению, что классов вещей больше, чем вещей. Отсюда следует, что классы не являются «вещами».
1 2 3 4