Никто не сможет преуспеть в математике, если он не умеет наслаждаться игрой ради самой игры. Любая профессиональная работа выполняется хорошо только теми людьми, кто испытывает удовольствие от этой работы, не говоря о том, что эта деятельность помогает им зарабатывать на жизнь, а ее результат имеет ценность для всего мира. Никто не сможет стать хорошим математиком только для того, чтобы зарабатывать на жизнь, или только для того, чтобы стать полезным гражданином; он должен также получать своего рода удовлетворение от математики, как другие люди получают от решения шахматной задачи или задачи построения мостов. Приведу несколько примеров. Если они вас позабавят, то было бы лучше для вас посвятить некоторое время занятиям математикой; если нет, то – нет.
Помню, что в детстве я с огромным удовольствием открыл для себя формулу суммы того, что называется «арифметической прогрессией». Арифметическая прогрессия – это ряды чисел, в которых каждый член, кроме первого, больше (или меньше), чем предыдущее на определенную величину. Эта определенная величина называется «разность". Ряд 1, 3, 5, 7,… представляет собой арифметическую прогрессию, в которой разность равна 2. Ряд 2, 5, 8, 11,… – арифметическая прогрессия, в которой разность равна 3. Теперь предположим что у вас есть арифметическая прогрессия, состоящая из конечного количества членов, и вы хотите знать сумму всех членов этой прогрессии. Как это сделать?
Рассмотрим не очень сложный пример: ряд 4, 8, 12, 16,… 96, т. е. все числа, меньше 100, делятся на 4. Если вы хотите узнать сумму этих чисел, то вы можете это сделать, сложив все их по порядку. Но можно избежать этой работы с помощью небольшого наблюдения. Первое число – 4, последнее – 96; их сумма равна 100. Второе число 8, предпоследнее – 92; их сумма тоже 100. Становится очевидным, что вы можете разбить числа на пары, и каждая пара в сумме даст 100. В ряду 24 числа, следовательно 12 пар чисел, следовательно сумма всех чисел этого ряда равна 1200. Исходя из этого примера, можно предположить общее правило: чтобы найти сумму арифметической прогрессии, нужно сложить первое и последнее число, а затем умножить на 1/2 количества всех членов прогрессии. Вы можете легко убедиться, что это верно не только для четных чисел, как в приведенном выше примере, но и для нечетных чисел.
Можно также предложить и новую формулировку этой формулы для того случая, если нам неизвестно последнее число прогрессии, а известно только первое число, количество членов и разность. Рассмотрим пример. Предположим, что первое число – 5, разность – 3, и количество членов 21. Тогда последнее число равно 5 + (20 х 3), т. е. 65. Таким образом, сумма первого и последнего членов равна 70, сумма прогрессии равна 1/2 от 70, умноженной на количество членов прогрессии, т. е. 70/2 х 21. Это 35 х 21, т. е. 735. Общее правило таково: прибавь квадрат первого члена к разности, умноженной на количество членов прогрессии минус 1, а затем умножь все это на 1/2 количества членов прогрессии. Это то же самое правило, которому выше была дана иная формулировка.
Рассмотрим теперь другую проблему. Предположим, у вас есть некоторое количество цистерн, каждая из которых представляет собой идеальный куб, т. е. длина, высота и ширина этого куба равны. Предположим, что измерения первой цистерны равны 1 футу, второй – 2 футам, третьей – 3 футам и т. д. Вы хотите узнать, какое количество кубических футов бензина поместится во все эти цистерны. В первую поместится 1 кубический фут, во вторую – 8, в третью – 27, в четвертую – 64, в пятую – 125, в шестую – 216, и т. д. Таким образом, то, что вы хотите знать, представляет собой сумму кубов стольких-то чисел. Вы заметили, что
1 amp; 8 = 9, т. е. 3 х 3, а 3 – это 1/2 от 2 х 3
1 amp; 8 amp; 27 = 36, т. е. 6 х б, а б – это 1/2 от 3 х 4
1 amp;8 amp;27 amp;64=100,т. е.10 х 10, а 10 – это 1/2 от 4 х 5
1 amp; 8 amp; 27 amp; 64 amp; 125 = 225, т. е. 15 х 15,а 15 – это 1/2 от 5 х б
1 amp; 8 amp; 27 amp; 64 amp; 125 amp; 216 = 441, т. е. 21 х 21, а 21 – это 1/2 от 6 х 7
На основании этого примера можно вывести правило для суммы кубов стольких-то целых чисел. Правило таково: умножь число рассматриваемых целых чисел на число, которое больше его на единицу, полученный результат подели пополам, а полученное число возведи в квадрат. Вы легко сможете убедиться в том, что эта формула верна с помощью так называемой «математической индукции». Это значит:
нужно предположить, что ваша формула верна для определенного числа, и доказать, что в этом случае она верна и для следующего числа. Докажем, что наша формула верна для 1. Следовательно, она верна для 2, и для 3, и т. д. Это весьма эффективный метод, с помощью которого были доказаны большинство свойств целых чисел. И часто, как и в приведенном выше примере, это позволяет вам сформулировать предположение в виде теоремы.
Рассмотрим другой вид задач, а именно задач «комбинаций и перестановок». Довольно часто они приобретают значимость, но мы начнем с простых примеров. Предположим, хозяйка хочет организовать вечер с ужином, на который она хотела бы пригласить 20 человек, но одновременно она может пригласить только 10. Каковы же варианты выбора? Очевидно, что существует 20 вариантов выбора первого гостя; когда он выбран, остается 19 вариантов выбрать второго и т. д. Когда выбрано 9 гостей, остается 11 вариантов, следовательно, последний гость может быть выбран, исходя из 11-ти вариантов. Итак, полное число вариантов равно
20 х 19 х 18 х 17 х 16 х 15 х 14 х 13 х 12 х 11.
Это довольно большое число; просто удивительно, почему хозяйки не путаются. Мы можем упростить ответ, используя так называемые «факториалы».
Факториал 2 обозначает произведение всех чисел до 2, т. е. 2;
Факториал 3 обозначает произведение всех чисел до 3, т. е. б;
Факториал 4 обозначает произведение всех чисел до 4, т. е. 24;
Факториал 5 обозначает произведение всех чисел до 5, т. е. 120;
и т. д.
Сейчас число вариантов выбора в нашем примере представлено факториалом 20, разделенным на факториал 10. Это задача и называется задачей «комбинаций». Общее правило таково, что число способов, которыми вы можете выбрать m вещей из n вещей (n» m), равно факториалу n, разделенному на факториал m.
Теперь рассмотрим «перестановки», где главная проблема заключается не в выборе вещей, а в их организации. Предположим, наша хозяйка выбрала 10 своих гостей и думает о том, как их посадить за столом. Она и ее муж сядут, как всегда, по бокам стола, а гости – на остальные 10 мест вокруг стола. Таким образом, для первого гостя существует 10 вариантов, для второго – 9 и т. д.; сумма вариантов равна факториалу 10, т. е. 3 628 800. К счастью, социальные правила, например, посадить мужчин напротив женщин или посадить мужей отдельно от жен, уменьшают варианты до 4 или 5.
Рассмотрим еще одну задачу в разделе «комбинации». Предположим, у вас есть некоторое количество предметов, и вы можете выбрать те, что вам нравятся – все или не одного.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Помню, что в детстве я с огромным удовольствием открыл для себя формулу суммы того, что называется «арифметической прогрессией». Арифметическая прогрессия – это ряды чисел, в которых каждый член, кроме первого, больше (или меньше), чем предыдущее на определенную величину. Эта определенная величина называется «разность". Ряд 1, 3, 5, 7,… представляет собой арифметическую прогрессию, в которой разность равна 2. Ряд 2, 5, 8, 11,… – арифметическая прогрессия, в которой разность равна 3. Теперь предположим что у вас есть арифметическая прогрессия, состоящая из конечного количества членов, и вы хотите знать сумму всех членов этой прогрессии. Как это сделать?
Рассмотрим не очень сложный пример: ряд 4, 8, 12, 16,… 96, т. е. все числа, меньше 100, делятся на 4. Если вы хотите узнать сумму этих чисел, то вы можете это сделать, сложив все их по порядку. Но можно избежать этой работы с помощью небольшого наблюдения. Первое число – 4, последнее – 96; их сумма равна 100. Второе число 8, предпоследнее – 92; их сумма тоже 100. Становится очевидным, что вы можете разбить числа на пары, и каждая пара в сумме даст 100. В ряду 24 числа, следовательно 12 пар чисел, следовательно сумма всех чисел этого ряда равна 1200. Исходя из этого примера, можно предположить общее правило: чтобы найти сумму арифметической прогрессии, нужно сложить первое и последнее число, а затем умножить на 1/2 количества всех членов прогрессии. Вы можете легко убедиться, что это верно не только для четных чисел, как в приведенном выше примере, но и для нечетных чисел.
Можно также предложить и новую формулировку этой формулы для того случая, если нам неизвестно последнее число прогрессии, а известно только первое число, количество членов и разность. Рассмотрим пример. Предположим, что первое число – 5, разность – 3, и количество членов 21. Тогда последнее число равно 5 + (20 х 3), т. е. 65. Таким образом, сумма первого и последнего членов равна 70, сумма прогрессии равна 1/2 от 70, умноженной на количество членов прогрессии, т. е. 70/2 х 21. Это 35 х 21, т. е. 735. Общее правило таково: прибавь квадрат первого члена к разности, умноженной на количество членов прогрессии минус 1, а затем умножь все это на 1/2 количества членов прогрессии. Это то же самое правило, которому выше была дана иная формулировка.
Рассмотрим теперь другую проблему. Предположим, у вас есть некоторое количество цистерн, каждая из которых представляет собой идеальный куб, т. е. длина, высота и ширина этого куба равны. Предположим, что измерения первой цистерны равны 1 футу, второй – 2 футам, третьей – 3 футам и т. д. Вы хотите узнать, какое количество кубических футов бензина поместится во все эти цистерны. В первую поместится 1 кубический фут, во вторую – 8, в третью – 27, в четвертую – 64, в пятую – 125, в шестую – 216, и т. д. Таким образом, то, что вы хотите знать, представляет собой сумму кубов стольких-то чисел. Вы заметили, что
1 amp; 8 = 9, т. е. 3 х 3, а 3 – это 1/2 от 2 х 3
1 amp; 8 amp; 27 = 36, т. е. 6 х б, а б – это 1/2 от 3 х 4
1 amp;8 amp;27 amp;64=100,т. е.10 х 10, а 10 – это 1/2 от 4 х 5
1 amp; 8 amp; 27 amp; 64 amp; 125 = 225, т. е. 15 х 15,а 15 – это 1/2 от 5 х б
1 amp; 8 amp; 27 amp; 64 amp; 125 amp; 216 = 441, т. е. 21 х 21, а 21 – это 1/2 от 6 х 7
На основании этого примера можно вывести правило для суммы кубов стольких-то целых чисел. Правило таково: умножь число рассматриваемых целых чисел на число, которое больше его на единицу, полученный результат подели пополам, а полученное число возведи в квадрат. Вы легко сможете убедиться в том, что эта формула верна с помощью так называемой «математической индукции». Это значит:
нужно предположить, что ваша формула верна для определенного числа, и доказать, что в этом случае она верна и для следующего числа. Докажем, что наша формула верна для 1. Следовательно, она верна для 2, и для 3, и т. д. Это весьма эффективный метод, с помощью которого были доказаны большинство свойств целых чисел. И часто, как и в приведенном выше примере, это позволяет вам сформулировать предположение в виде теоремы.
Рассмотрим другой вид задач, а именно задач «комбинаций и перестановок». Довольно часто они приобретают значимость, но мы начнем с простых примеров. Предположим, хозяйка хочет организовать вечер с ужином, на который она хотела бы пригласить 20 человек, но одновременно она может пригласить только 10. Каковы же варианты выбора? Очевидно, что существует 20 вариантов выбора первого гостя; когда он выбран, остается 19 вариантов выбрать второго и т. д. Когда выбрано 9 гостей, остается 11 вариантов, следовательно, последний гость может быть выбран, исходя из 11-ти вариантов. Итак, полное число вариантов равно
20 х 19 х 18 х 17 х 16 х 15 х 14 х 13 х 12 х 11.
Это довольно большое число; просто удивительно, почему хозяйки не путаются. Мы можем упростить ответ, используя так называемые «факториалы».
Факториал 2 обозначает произведение всех чисел до 2, т. е. 2;
Факториал 3 обозначает произведение всех чисел до 3, т. е. б;
Факториал 4 обозначает произведение всех чисел до 4, т. е. 24;
Факториал 5 обозначает произведение всех чисел до 5, т. е. 120;
и т. д.
Сейчас число вариантов выбора в нашем примере представлено факториалом 20, разделенным на факториал 10. Это задача и называется задачей «комбинаций». Общее правило таково, что число способов, которыми вы можете выбрать m вещей из n вещей (n» m), равно факториалу n, разделенному на факториал m.
Теперь рассмотрим «перестановки», где главная проблема заключается не в выборе вещей, а в их организации. Предположим, наша хозяйка выбрала 10 своих гостей и думает о том, как их посадить за столом. Она и ее муж сядут, как всегда, по бокам стола, а гости – на остальные 10 мест вокруг стола. Таким образом, для первого гостя существует 10 вариантов, для второго – 9 и т. д.; сумма вариантов равна факториалу 10, т. е. 3 628 800. К счастью, социальные правила, например, посадить мужчин напротив женщин или посадить мужей отдельно от жен, уменьшают варианты до 4 или 5.
Рассмотрим еще одну задачу в разделе «комбинации». Предположим, у вас есть некоторое количество предметов, и вы можете выбрать те, что вам нравятся – все или не одного.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21