Не беда, что мы не способны сделать это практически (ни один компьютер не справится с такой задачей), главное, что мы можем это сделать теоретически. В мире И.Ньютона все события раз и навсегда предопределены, это мир строгого детерминизма, в котором нет места случайностям.
А вот согласно второму началу термодинамики, в изолированной системе все процессы протекают только в одном направлении – в сторону повышения энтропии, возрастания хаоса, что сопровождается рассеянием, обесцениванием энергии. Так всегда и происходит на практике: сама собой лучистая энергия пламени свечи может только безвозвратно рассеиваться в пространстве. Однако можно ли этот принцип обосновать теоретически?
Обосновать какое-либо явление теоретически – значит вывести его из возможно более общих законов природы, принятых за основу научной картины мира. Такими законами по праву считаются законы механики Ньютона, и поэтому проблема формулируется следующим образом: как можно вывести необратимость термодинамики из обратимости механики?
Впервые эту проблему пытался решить во второй половине прошлого века Л.Больцман. Он обратил внимание на то, что термодинамическая необратимость имеет смысл только для большого числа частиц: если частиц мало, то система оказывается фактически обратимой. Для того чтобы согласовать микроскопическую обратимость с макроскопической необратимостью, Больцман использовал вероятностное описание системы частиц (это так называемая Н-теорема) и получил желаемый результат. Однако вскоре было показано, что уже само по себе вероятностное описание в неявном виде содержит представление о существовании «стрелы времени», и поэтому доказательство Больцмана нельзя считать корректным решением проблемы.
И вообще существование «стрелы времени» может быть только самостоятельным постулатом, потому что означает нарушение симметрии решений уравнений движения. Но какая физическая реальность соответствует такому постулату? Получается так, что либо из обратимой механики можно вывести только обратимую термодинамику (допускающую возможность «вечного двигателя» второго рода), либо необратимую термодинамику можно вывести только из необратимой механики (допускающей возможность «вечного двигателя» первого рода).
Интересно, что обе эти возможности действительно были испробованы. Сам Больцман пришел к выводу, что вся бесконечная Вселенная в целом обратима, а наш мир представляет собой по космическим меркам микроскопическую флуктуацию. А в середине нашего века пулковский астроном Н.А.Козырев попытался создать необратимую механику, в которой «стрела времени» имеет характер физической реальности и служит источником энергии звезд. Но точка зрения Больцмана допускает возможность нарушения причинности в отдельных достаточно обширных областях Вселенной, а точка зрения Козырева вводит в описание природы некую особую физическую сущность, подобную «жизненной силе».
1.2. «Порядок из хаоса»
Так называется известная книга нобелевского лауреата И.Р.Пригожина, написанная им в соавторстве с историком науки И.Стенгерс. Это название буквально в двух словах характеризует суть исследований, начатых этим замечательным ученым в пятидесятые годы нашего столетия и завершившихся созданием особой, неравновесной термодинамики.
Классическая термодинамика, которую Больцман пытался обосновать с помощью классической же механики, описывает только поведение строго изолированных систем, близких к состоянию термодинамического равновесия, отклоняющихся от него лишь в пределах чисто статистических флуктуаций. В таких системах могут происходить только процессы деструктивного характера, сопровождающиеся неуклонным возрастанием энтропии. Однако повсеместно в природе наблюдаются и процессы самоорганизации вещества, самопроизвольного возникновения из хаоса неравновесных, так называемых диссипативных структур. Наиболее яркими примерами подобных процессов могут служить явления самозарождения жизни и биологической эволюции.
Означает ли это, что в некоторых случаях второе начало термодинамики может нарушаться? Острая дискуссия на эту тему длилась многие годы и, в конце концов, завершилась победой сторонников строгого соблюдения фундаментальных законов природы. Но при этом был сделан ряд существенных уточнений, касающихся не самих законов, а границ их применимости к реальным системам. Так сказать, не самой структуры научного языка, а смысла используемых в нем слов. Например, ревизии пришлось подвергнуть смысл понятия «хаос».
Хаос, царящий в равновесных системах, носит сугубо статистический характер, и мы говорим лишь о вероятности отклонения системы от состояния равновесия. Реакция такой системы на то или иное возмущающее воздействие линейна – она прямо пропорциональна возмущающей силе и стремится вернуть систему в прежнее состояние. Так, если по гладкой трубе с небольшой скоростью течет жидкость, то в ней случайно возникают малые завихрения, но эти завихрения сами собой гасятся, и в целом поток остается упорядоченным, ламинарным.
Но если система сильно неравновесна, то есть обладает значительным избытком свободной энергии, то в ней может возникать хаос особого рода, называемый динамическим; реакция такой системы на возмущающие воздействия нелинейна и может быть сколь угодно большой при сколь угодно малом первичном возмущении. Так, если скорость движения жидкости по трубе превышает некоторую критическую величину, то малейшая неоднородность потока немедленно приведет к катастрофическому превращению ламинарного потока в неупорядоченный, турбулентный.
Однако, динамический хаос замечателен тем, что за внешне совершенно непредсказуемым поведением системы кроется строгий детерминизм – все происходящие в ней процессы можно математически рассчитать с любой требуемой точностью. Еще одна особенность такого хаоса заключается в том, что он может служить источником самозарождения строго упорядоченных структур. Например, в турбулентном потоке могут возникать устойчивые вихри – подобные вихри (так называемую «дорожку Кармана») можно наблюдать за быстро плывущей лодкой.
1.3. Понятие системы
Ревизии пришлось подвергнуть и смысл понятия «система». Когда система в целом находится в состоянии, далеком от истинного термодинамического равновесия, а это относится ко всем реально существующим системам, то в ее отдельных частях могут самопроизвольно происходить процессы самоорганизации, сопровождающиеся понижением энтропии. Если не учитывать того, что подсистемы, в которых из динамического хаоса самозарождаются диссипативные структуры, питаются свободной энергией внешней среды, то возникает видимость нарушения второго начала термодинамики.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
А вот согласно второму началу термодинамики, в изолированной системе все процессы протекают только в одном направлении – в сторону повышения энтропии, возрастания хаоса, что сопровождается рассеянием, обесцениванием энергии. Так всегда и происходит на практике: сама собой лучистая энергия пламени свечи может только безвозвратно рассеиваться в пространстве. Однако можно ли этот принцип обосновать теоретически?
Обосновать какое-либо явление теоретически – значит вывести его из возможно более общих законов природы, принятых за основу научной картины мира. Такими законами по праву считаются законы механики Ньютона, и поэтому проблема формулируется следующим образом: как можно вывести необратимость термодинамики из обратимости механики?
Впервые эту проблему пытался решить во второй половине прошлого века Л.Больцман. Он обратил внимание на то, что термодинамическая необратимость имеет смысл только для большого числа частиц: если частиц мало, то система оказывается фактически обратимой. Для того чтобы согласовать микроскопическую обратимость с макроскопической необратимостью, Больцман использовал вероятностное описание системы частиц (это так называемая Н-теорема) и получил желаемый результат. Однако вскоре было показано, что уже само по себе вероятностное описание в неявном виде содержит представление о существовании «стрелы времени», и поэтому доказательство Больцмана нельзя считать корректным решением проблемы.
И вообще существование «стрелы времени» может быть только самостоятельным постулатом, потому что означает нарушение симметрии решений уравнений движения. Но какая физическая реальность соответствует такому постулату? Получается так, что либо из обратимой механики можно вывести только обратимую термодинамику (допускающую возможность «вечного двигателя» второго рода), либо необратимую термодинамику можно вывести только из необратимой механики (допускающей возможность «вечного двигателя» первого рода).
Интересно, что обе эти возможности действительно были испробованы. Сам Больцман пришел к выводу, что вся бесконечная Вселенная в целом обратима, а наш мир представляет собой по космическим меркам микроскопическую флуктуацию. А в середине нашего века пулковский астроном Н.А.Козырев попытался создать необратимую механику, в которой «стрела времени» имеет характер физической реальности и служит источником энергии звезд. Но точка зрения Больцмана допускает возможность нарушения причинности в отдельных достаточно обширных областях Вселенной, а точка зрения Козырева вводит в описание природы некую особую физическую сущность, подобную «жизненной силе».
1.2. «Порядок из хаоса»
Так называется известная книга нобелевского лауреата И.Р.Пригожина, написанная им в соавторстве с историком науки И.Стенгерс. Это название буквально в двух словах характеризует суть исследований, начатых этим замечательным ученым в пятидесятые годы нашего столетия и завершившихся созданием особой, неравновесной термодинамики.
Классическая термодинамика, которую Больцман пытался обосновать с помощью классической же механики, описывает только поведение строго изолированных систем, близких к состоянию термодинамического равновесия, отклоняющихся от него лишь в пределах чисто статистических флуктуаций. В таких системах могут происходить только процессы деструктивного характера, сопровождающиеся неуклонным возрастанием энтропии. Однако повсеместно в природе наблюдаются и процессы самоорганизации вещества, самопроизвольного возникновения из хаоса неравновесных, так называемых диссипативных структур. Наиболее яркими примерами подобных процессов могут служить явления самозарождения жизни и биологической эволюции.
Означает ли это, что в некоторых случаях второе начало термодинамики может нарушаться? Острая дискуссия на эту тему длилась многие годы и, в конце концов, завершилась победой сторонников строгого соблюдения фундаментальных законов природы. Но при этом был сделан ряд существенных уточнений, касающихся не самих законов, а границ их применимости к реальным системам. Так сказать, не самой структуры научного языка, а смысла используемых в нем слов. Например, ревизии пришлось подвергнуть смысл понятия «хаос».
Хаос, царящий в равновесных системах, носит сугубо статистический характер, и мы говорим лишь о вероятности отклонения системы от состояния равновесия. Реакция такой системы на то или иное возмущающее воздействие линейна – она прямо пропорциональна возмущающей силе и стремится вернуть систему в прежнее состояние. Так, если по гладкой трубе с небольшой скоростью течет жидкость, то в ней случайно возникают малые завихрения, но эти завихрения сами собой гасятся, и в целом поток остается упорядоченным, ламинарным.
Но если система сильно неравновесна, то есть обладает значительным избытком свободной энергии, то в ней может возникать хаос особого рода, называемый динамическим; реакция такой системы на возмущающие воздействия нелинейна и может быть сколь угодно большой при сколь угодно малом первичном возмущении. Так, если скорость движения жидкости по трубе превышает некоторую критическую величину, то малейшая неоднородность потока немедленно приведет к катастрофическому превращению ламинарного потока в неупорядоченный, турбулентный.
Однако, динамический хаос замечателен тем, что за внешне совершенно непредсказуемым поведением системы кроется строгий детерминизм – все происходящие в ней процессы можно математически рассчитать с любой требуемой точностью. Еще одна особенность такого хаоса заключается в том, что он может служить источником самозарождения строго упорядоченных структур. Например, в турбулентном потоке могут возникать устойчивые вихри – подобные вихри (так называемую «дорожку Кармана») можно наблюдать за быстро плывущей лодкой.
1.3. Понятие системы
Ревизии пришлось подвергнуть и смысл понятия «система». Когда система в целом находится в состоянии, далеком от истинного термодинамического равновесия, а это относится ко всем реально существующим системам, то в ее отдельных частях могут самопроизвольно происходить процессы самоорганизации, сопровождающиеся понижением энтропии. Если не учитывать того, что подсистемы, в которых из динамического хаоса самозарождаются диссипативные структуры, питаются свободной энергией внешней среды, то возникает видимость нарушения второго начала термодинамики.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86