ТВОРЧЕСТВО

ПОЗНАНИЕ

 

п.). В этом случае объект исследования выделяется и анализируется конкретной научной дисциплиной.
Особенность простых систем – в практически взаимной независимости их свойств, позволяющей исследовать каждое из них в отдельности в условиях классического лабораторного эксперимента; особенность сложных систем заключается в существенной взаимосвязи их свойств (иногда она даже применяется как определение сложной системы).
Будем считать систему сложной, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов, каждый из которых может быть представлен в виде системы. В качестве содержания теории развития сложных систем можно рассматривать совокупность методологических подходов, позволяющих строить модели процессов развития сложных систем, используя достижения различных наук, а также методы анализа получаемых моделей.
Обычное для теории простых систем требование адекватности модели оригиналу для моделей сложных систем приводит к непомерному росту их размерности, приводящему к их неосуществимости. Ситуация для построения теории кажется безнадежной, она действительно оказывается таковой, если не произвести некоторого разумного отступления от непомерных требований адекватности теории и вместе с тем не отступать от требований ее объективности.
Математические модели любых систем могут быть двух типов – эмпирические и теоретические. Эмпирические модели – это математические выражения, аппроксимирующие (с использованием тех или иных критериев приближения) экспериментальные данные о зависимости параметров состояния системы от значений параметров влияющих на них факторов. Для эмпирических математических моделей не требуется получения никаких представлений о строении и внутреннем механизме связей в системе. Вместе с тем задача о нахождении математического выражения эмпирической модели по заданному массиву наблюдений в пределах выбранной точности описания явления не однозначна. Существует бесконечное множество математических выражений, аппроксимирующих в пределах данной точности одни и те же опытные данные о зависимости параметров.
Теоретические модели систем строятся на основании синтеза обобщенных представлений об отдельных слагающих их процессах и явлениях, основываясь на фундаментальных законах, описывающих поведение вещества, энергии, информации. Теоретическая модель описывает абстрактную систему, и для первоначального вывода ее соотношений не требуется данных о наблюдениях за параметрами конкретной системы. Модель строится на основе обобщения априорных представлений о структуре системы и механизма связей между слагающими ее элементами.
Наряду с эмпирическими и теоретическими используются и полуэмпирические модели. Для них математические выражения получаются теоретическим путем с точностью до эмпирически получаемых констант, либо в общей системе соотношений моделей наряду с теоретическими выражениями используются и эмпирические.
Построение эмпирических моделей – единственно возможный способ моделирования тех элементов системы, для которых нельзя построить в настоящее время теоретических моделей из-за отсутствия сведений об их внутреннем механизме. Вопросы, связанные с построением эмпирических моделей, относятся к области обработки наблюдений или, точнее, к математической теории планирования эксперимента.
Для некоторых систем единственная возможность оценить правильность теоретической модели состоит в проведении численных экспериментов с использованием математических моделей. Поведение модели не должно противоречить общим представлениям о закономерностях поведения процессов.
Теоретическая модель описывает не конкретную систему, а класс систем. Поэтому проверка теоретической модели возможна при исследовании конкретных частично или полностью наблюдаемых систем. Затем проверенную таким образом теоретическую модель можно применять для описания и изучения конкретных ненаблюдаемых систем, относящихся к тому же либо к более узкому классу.
Строго обосновать выражение «модели относятся к одному и тому же классу» несколько затруднительно. Мы будем рассматривать класс развивающихся систем, к которому могут относиться системы искусственные, живой и неживой природы, социальные и т. п.
Между эмпирическими, полуэмпирическими и теоретическими моделями не существует резкой границы. Любые математические модели, в конечном счете, выражаются через параметры, определяемые экспериментальным путем. Все различия между тремя упомянутыми типами моделей сводятся к степени общности представлений, относящихся к данной модели, а именно: или они относятся непосредственно к изучаемому конкретному объекту, или связаны с классом таких объектов, или же, наконец, связаны с классом явлений, наблюдающихся в природе большинство процессов столь сложно, что при современном состоянии науки очень редко удается создать их универсальную теорию, действующую во все времена и на всех участках рассматриваемого процесса. Вместо этого нужно посредством экспериментов и наблюдений постараться понять ведущие (определяющие) факторы, которые определяют поведение системы. Выделив эти факторы, следует абстрагироваться от других, менее существенных, построить более простую математическую модель, которая учитывает лишь выделенные факторы. К внешним факторам будем относить такие, которые влияют на параметры изучаемой модели, но сами на исследуемом временном отрезке не испытывают обратного влияния.
Известно, что материальное единство мира находит свое отражение во взаимосвязи целого и его частей. До недавнего времени в естествознании преобладающим был подход, согласно которому часть всегда рассматривалась как более простое, чем целое. Новое направление – синергетика описывает процессы, в которых целое обладает такими свойствами, которых нет у его частей. Она рассматривает окружающий материальный мир как множество локализованных процессов различной сложности и ставит задачу отыскать единую основу организации мира как для простейших, так и для сложных его структур. В то же время синергетика не утверждает, что целое сложнее части, она указывает на то, что целое и часть обладают различными свойствами и в силу этого отличны друг от друга.
В синергетике делается попытка описать развитие мира в соответствии с его внутренними законами развития, опираясь при этом на результаты всего комплекса естественных наук. Для нашего анализа представляется важным то, что одним из основных понятий синергетики является понятие нелинейности.
Не только в процессе научного познания, но и в своей повседневной практике мы фактически сталкиваемся с различными проявлениями нелинейных закономерностей.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86