ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Я уж не говорю о том, что расстояние между Землёй и Луной во много раз меньше расстояния до планет (а тем более – до звёзд), поэтому взаимное расположение звёзд и планет с Луны выглядит практически так же, как и с Земли. Так что NASA для подделки вида неба с Луны не пришлось бы долго трудиться.
– Это всё понятно, но звёзд от этого на снимках не прибавилось.
– Невозможно запечатлеть ярко освещённые Солнцем объекты и одновременно звёзды. Можно, конечно, сфотографировать звёзды, поставив длительную выдержку, но при этом на фотографии не получатся яркие объекты (астронавт, лунная кабина, флаг, лунная поверхность и т. д.). А зачем это американцам? Что на снимках было для них более важно – лунные пейзажи и люди или же звёзды?
– Нет слов, одни эмоции… Странно: русские и Гагарин звёзды видели, американцы и Армстронг – нет. Может, они летали в разные места? А вы ещё скажите, что вспышка освещает звёзды, и поэтому они остаются на плёнке.
– Естественно, нет.
Итак, основы фотографии. Фотоплёнка при попадании на неё света чернеет. Почернение тем больше, чем больше так называемая экспозиция – количество света, попавшее на неё, то есть освещённость плёнки, умноженная на время освещения. H=Et, где Н – экспозиция, Е – освещённость, t – время освещения. Грубо говоря, если экспозиция меньше некоего минимального порогового значения, то почернения нет, если же больше максимального порогового – то плёнка больше не почернеет (и так полностью почернела, дальше некуда – а в некоторых случаях при очень сильной передержке может даже несколько посветлеть, этот эффект называется соляризацией). Интервал экспозиций, в котором плёнка правильно воспроизводит изображение, называется фотографической широтой.
Зависимость почернения фотослоя от экспозиции.
По горизонтальной оси отложена экспозиция H, по вертикальной – степень почернения d (обе величины – в логарифмическом масштабе).
H < H0 – область вуали.
H0 < H < H1 – область недодержек.
H1 < H < H2 – область нормальных экспозиций.
H > H2 – область передержек и соляризации.
В фотоаппарате для регулирования количества света, попадающего на плёнку, изменяется и время съёмки, то есть время, на которое открывается затвор (выдержка), и освещённость плёнки. Для регулирования освещённости в объектив вмонтирована так называемая диафрагма – металлические лепестки, которые могут сходиться или расходиться, изменяя количество проходящего через объектив света. Аналогичное устройство имеется в человеческом глазу – зрачок, который при ярком свете сужается.
Если мы фотографируем объект с очень большим диапазоном яркостей, то может получиться, что очень сильно освещённые участки кадра уйдут в область передержек, то есть на снимке (на позитиве) будут полностью белыми, без каких-либо деталей, а слабо освещённые останутся в области недодержек, то есть на снимке будут совершенно чёрными. Поэтому такие высококонтрастные сюжеты очень трудно снимать. В студии тени подсвечивают специальными слабыми источниками света (заполняющий свет), чтобы в тенях появились детали. (Зайдите в фотостудию и закажите портрет. Как минимум, там будет два источника света: один, сильный, освещает лицо сбоку и создаёт рельеф лица на изображении (рисующий свет), другой, послабее, освещает лицо со стороны аппарата и создаёт освещённость в тенях, снижая контраст изображения. А любительские портреты со вспышкой выглядят несколько плоскими и безжизненными, потому что вспышка освещает лицо от аппарата и теней на нём нет.)
Если же то, что мы снимаем, контрастно и подсветить тени нельзя, то это – очень сложный объект для съёмки. Например, мы стоим в туннеле, фотографируем выход из него и хотим, чтобы получились и объекты в туннеле, и освещённый солнцем пейзаж. Тут надо тщательно измерить яркости объектов в туннеле и яркости пейзажа и так выбрать сочетание выдержка диафрагма, чтобы яркости «влезли» в тот интервал, который может передать плёнка. В таких случаях фотографы делают ещё и «вилку» – снимают три раза: один с расчётной выдержкой и диафрагмой, другой – увеличив выдержку относительно расчётной (или приоткрыв диафрагму) и третий – наоборот, чтобы потом выбрать наилучший снимок, в котором яркости объектов наилучшим образом «вписываются» в воспроизводимый плёнкой диапазон яркостей. Впрочем, если диапазон яркостей в кадре слишком велик, то всё равно ничего не получится.
И наконец, на Луну. Лунные камни и астронавты освещены Солнцем не хуже, чем сочинский пляж летом в ясный день. Современные аппараты сами определяют освещённость объекта съёмки и отрабатывают соответственно этому выдержку и диафрагму, но тот, кто фотографировал старыми камерами, где выдержку и диафрагму надо было ставить вручную, знает, что для съёмки в таких условиях нало ставить самую короткую выдержку, которая есть у затвора (одна пятисотая или одна тысячная доля секунды), да ещё довольно сильно задиафрагмировать объектив. Абсолютно чёрное небо с крохотными точечками звёзд при такой выдержке, конечно, «не проработается» – звёзды на снимке видны не будут. Чтобы они появились на фотографии, надо полностью открыть диафрагму и дать выдержку в несколько десятков секунд – но при этом всё остальное уйдёт на плёнке далеко в область передержек и на снимке будет полностью белым без каких-либо деталей. (Эффектные фотографии в учебниках астрономии, где звёзды описывают круги вокруг полюса, получают, как нетрудно понять, делая выдержку в час (!) или ещё больше.) В общем, фотографическая широта плёнки недостаточна, чтобы одновременно проработать и освещённые прямым солнечным светом объекты, и звёзды. Либо то, либо это.
А теперь давайте оценим яркость звёзд и объектов на снимках NASA. Отношения максимальной и минимальной яркостей объектов на снимках с Луны – более 100000. Визуальная звёздная величина Луны: -12.73, визуальная звёздная величина наиболее яркой звезды – Сириуса, равна -1.58. Отношение яркостей для звёзд считается на основе формулы Погсона: lg E2/E1=0,4(m1-m2). Для Луны и Сириуса в логарифмическом масштабе получим 4,46 или более 28800. Фотоплёнок с такой фотографической широтой нет (по крайней мере, у астронавтов на Луне не было.)
Менее утешительный результат получится, если сравнивать яркость объектов на поверхности Луны всё с тем же Сириусом. По справочнику [3] табл.111 находим яркость Луны 2500 кд/м?, откуда (по формуле Погсона) яркость Сириуса около 0,18 кд/м?. Освещённость, создаваемая Солнцем вне атм. Земли на удалении 1 а.е. в среднем 127 000 лк ([1] с. 1200); яркость листа белой бумаги (коэфф. диффузного отражения 0.6-0.7) при освещённости 30-50 лк будет 10-15 кд/м? ([3] табл.111). Поэтому на поверхности Луны яркость листа бумаги (в худшем случае 50/10) =127000лк/50лк x 10 = 25400 кд/м?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118