Он пришёл к выводу, что это отличие может быть фундаментальным свойством странных частиц, и предложил ввести новое квантовое свойство, названное странностью. По причинам алгебраического характера странность частицы равна удвоенной разности между средним зарядом мультиплета и средним зарядом нуклонов +1/2. Гелл-Манн показал, что странность сохраняется во всех реакциях, в которых участвует сильное взаимодействие. Иначе говоря, суммарная странность всех частиц до сильного взаимодействия должна быть абсолютно равна суммарной странности всех частиц после взаимодействия.
Сохранение странности объясняет, почему распад таких частиц не может определяться сильным взаимодействием. При столкновении некоторых других, не странных, частиц странные частицы рождаются парами. При этом странность одной частицы компенсирует странность другой. Например, если одна частица в паре имеет странность +1, то странность другой равна –1. Именно поэтому суммарная странность не странных частиц как до, так и после столкновения равна 0. После рождения странные частицы разлетаются. Изолированная странная частица не может распадаться вследствие сильного взаимодействия, если продуктами её распада должны быть частицы с нулевой странностью, так как такой распад нарушал бы сохранение странности. Гелл-Манн показал, что электромагнитное взаимодействие (характерное время действия которого заключено между временами сильного и слабого взаимодействий) также сохраняет странность. Таким образом, странные частицы, родившись, выживают вплоть до распада, определяемого слабым взаимодействием, которое не сохраняет странность. Свои идеи учёный опубликовал в 1953 году.
В 1955 году Гелл-Манн женился на Дж. Маргарет Доу, которая была археологом. У них родились сын и дочь. Жена учёного умерла в 1981 году.
В 1955 году Гелл-Манн стал адъюнкт-профессором факультета Калифорнийского технологического института; в следующем году он уже полный профессор, а в 1967 году занял почётный профессорский пост, учреждённый в память Роберта Э. Милликена.
В 1961 году Гелл-Манн обнаружил, что система мультиплетов, предложенная им для описания странных частиц, может быть включена в гораздо более общую теоретическую схему, позволившую ему сгруппировать все сильно взаимодействующие частицы в «семейства». Свою схему учёный назвал восьмеричным путём (по аналогии с восемью атрибутами праведного жития в буддизме), так как некоторые частицы были сгруппированы в семейства, насчитывающие по восемь членов. Предложенная им схема классификации частиц известна также под названием восьмеричной симметрии. Вскоре независимо от Гелл-Манна аналогичную классификацию частиц предложил израильский физик Юваль Нееман.
Восьмеричный путь американского учёного часто сравнивают с периодической системой химических элементов Менделеева, в которой химические элементы с аналогичными свойствами сгруппированы в семейства. Как и Менделеев, который оставил в периодической таблице некоторые пустые клетки, предсказав свойства неизвестных ещё элементов, Гелл-Манн оставил вакантные места в некоторых семействах частиц, предположив, какие частицы с правильным набором свойств должны заполнить «пустоты». Его теория получила частичное подтверждение в 1964 году, после открытия одной из таких частиц.
В 1963 году, находясь в качестве приглашённого профессора в Массачусетском технологическом институте, Гелл-Манн обнаружил, что детальная структура восьмеричного пути может быть объяснена, если предположить, что каждая частица, участвующая в сильном взаимодействии, состоит из триплета частиц с зарядом, составляющим дробную часть электрического заряда протона. К такому же открытию пришёл и американский физик Джордж Цвейг, работавший в Европейском центре ядерных исследований. Гелл-Манн назвал частицы с дробным зарядом кварками, заимствовав это слово из романа Джеймса Джойса «Поминки по Финнегану» («Три кварка для мистера Марка!»). Кварки могут иметь заряд +2/3 или –1/3. Существуют также антикварки с зарядами –2/3 или +1/3. Нейтрон, не имеющий электрического заряда, состоит из одного кварка с зарядом +2/3 и двух кварков с зарядом –1/3. Протон, обладающий зарядом +1, состоит из двух кварков с зарядами +2/3 и одного кварка с зарядом –1/3. Кварки с одним и тем же зарядом могут отличаться другими свойствами, т. е. существуют несколько типов кварков с одним и тем же зарядом. Различные комбинации кварков позволяют описывать все сильно взаимодействующие частицы.
В 1969 году учёный был удостоен Нобелевской премии по физике «За открытия, связанные с классификацией элементарных частиц и их взаимодействий». Выступая на церемонии вручения премии, Ивар Валлер из Шведской королевской академии наук отметил, что Гелл-Манн «на протяжении более чем десятилетия считается ведущим учёным в области теории элементарных частиц». По мнению Валлера, методы, предложенные им, «принадлежат к числу наиболее мощных средств дальнейших исследований по физике элементарных частиц».
Среди других вкладов Гелл-Манна в теоретическую физику следует отметить предложенное им совместно с Ричардом Ф. Фейнманом понятие «токов» слабых взаимодействий и последующее развитие «алгебры токов».
Гелл-Манн любитель наблюдать за птицами, пеших прогулок. Ещё одно его увлечение — бывать в местах, не тронутых цивилизацией. В 1969 году учёный помог организовать программу исследования окружающей среды, финансируемую Национальной академией наук США. Интересуется он и исторической лингвистикой.
Гелл-Манн состоит членом Американской академии наук и искусств, а также иностранным членом Лондонского королевского общества. За свои заслуги пред наукой он удостоен премии Дэнни Хейнемана Американского физического общества (1959), премии по физике Эрнеста Орландо Лоуренса Комиссии по атомной энергии Соединённых Штатов (1966), медали Франклина Франклиновского института (1967) и медали Джона Дж. Карти Национальной академии наук США (1968).
ЛИТЕРАТУРА
Александер Ф., Селесник Ш. Человек и его душа. Познание и врачевание от древности и до наших дней. М., 1995.
Андрусев М. М., Табер А. М. Н. Д. Зелинский. М., 1984.
Баландин Р. К. Вернадский: жизнь, мысль, бессмертие. М., 1979.
Бароян О. В. Блики на портрете. М., 1980.
Белов А. В. Обвинённые в ереси. М., 1973.
Библиотека Флорентия Павленкова. Т. 8, 10. Челябинск, 1995.
Болховитинов В. Н. Столетов. М., 1965.
Бобров Л. В. Тени невидимого света. М., 1964.
Бочков Н. П. Гены и судьбы. М., 1990.
Бублейников Ф. Д. Галилео Галилей. М., 1964.
Вер Г. Карл Гусав Юнг. Челябинск, 1998.
Великие русские люди. (Володин В., сост.) М., 1984.
Волошинов А. В. Пифагор. М., 1993.
Вяльцев А. Н., Григорян А. Т. Г. Герц. М., 1968.
Гернек Ф. Пионеры атомного века.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
Сохранение странности объясняет, почему распад таких частиц не может определяться сильным взаимодействием. При столкновении некоторых других, не странных, частиц странные частицы рождаются парами. При этом странность одной частицы компенсирует странность другой. Например, если одна частица в паре имеет странность +1, то странность другой равна –1. Именно поэтому суммарная странность не странных частиц как до, так и после столкновения равна 0. После рождения странные частицы разлетаются. Изолированная странная частица не может распадаться вследствие сильного взаимодействия, если продуктами её распада должны быть частицы с нулевой странностью, так как такой распад нарушал бы сохранение странности. Гелл-Манн показал, что электромагнитное взаимодействие (характерное время действия которого заключено между временами сильного и слабого взаимодействий) также сохраняет странность. Таким образом, странные частицы, родившись, выживают вплоть до распада, определяемого слабым взаимодействием, которое не сохраняет странность. Свои идеи учёный опубликовал в 1953 году.
В 1955 году Гелл-Манн женился на Дж. Маргарет Доу, которая была археологом. У них родились сын и дочь. Жена учёного умерла в 1981 году.
В 1955 году Гелл-Манн стал адъюнкт-профессором факультета Калифорнийского технологического института; в следующем году он уже полный профессор, а в 1967 году занял почётный профессорский пост, учреждённый в память Роберта Э. Милликена.
В 1961 году Гелл-Манн обнаружил, что система мультиплетов, предложенная им для описания странных частиц, может быть включена в гораздо более общую теоретическую схему, позволившую ему сгруппировать все сильно взаимодействующие частицы в «семейства». Свою схему учёный назвал восьмеричным путём (по аналогии с восемью атрибутами праведного жития в буддизме), так как некоторые частицы были сгруппированы в семейства, насчитывающие по восемь членов. Предложенная им схема классификации частиц известна также под названием восьмеричной симметрии. Вскоре независимо от Гелл-Манна аналогичную классификацию частиц предложил израильский физик Юваль Нееман.
Восьмеричный путь американского учёного часто сравнивают с периодической системой химических элементов Менделеева, в которой химические элементы с аналогичными свойствами сгруппированы в семейства. Как и Менделеев, который оставил в периодической таблице некоторые пустые клетки, предсказав свойства неизвестных ещё элементов, Гелл-Манн оставил вакантные места в некоторых семействах частиц, предположив, какие частицы с правильным набором свойств должны заполнить «пустоты». Его теория получила частичное подтверждение в 1964 году, после открытия одной из таких частиц.
В 1963 году, находясь в качестве приглашённого профессора в Массачусетском технологическом институте, Гелл-Манн обнаружил, что детальная структура восьмеричного пути может быть объяснена, если предположить, что каждая частица, участвующая в сильном взаимодействии, состоит из триплета частиц с зарядом, составляющим дробную часть электрического заряда протона. К такому же открытию пришёл и американский физик Джордж Цвейг, работавший в Европейском центре ядерных исследований. Гелл-Манн назвал частицы с дробным зарядом кварками, заимствовав это слово из романа Джеймса Джойса «Поминки по Финнегану» («Три кварка для мистера Марка!»). Кварки могут иметь заряд +2/3 или –1/3. Существуют также антикварки с зарядами –2/3 или +1/3. Нейтрон, не имеющий электрического заряда, состоит из одного кварка с зарядом +2/3 и двух кварков с зарядом –1/3. Протон, обладающий зарядом +1, состоит из двух кварков с зарядами +2/3 и одного кварка с зарядом –1/3. Кварки с одним и тем же зарядом могут отличаться другими свойствами, т. е. существуют несколько типов кварков с одним и тем же зарядом. Различные комбинации кварков позволяют описывать все сильно взаимодействующие частицы.
В 1969 году учёный был удостоен Нобелевской премии по физике «За открытия, связанные с классификацией элементарных частиц и их взаимодействий». Выступая на церемонии вручения премии, Ивар Валлер из Шведской королевской академии наук отметил, что Гелл-Манн «на протяжении более чем десятилетия считается ведущим учёным в области теории элементарных частиц». По мнению Валлера, методы, предложенные им, «принадлежат к числу наиболее мощных средств дальнейших исследований по физике элементарных частиц».
Среди других вкладов Гелл-Манна в теоретическую физику следует отметить предложенное им совместно с Ричардом Ф. Фейнманом понятие «токов» слабых взаимодействий и последующее развитие «алгебры токов».
Гелл-Манн любитель наблюдать за птицами, пеших прогулок. Ещё одно его увлечение — бывать в местах, не тронутых цивилизацией. В 1969 году учёный помог организовать программу исследования окружающей среды, финансируемую Национальной академией наук США. Интересуется он и исторической лингвистикой.
Гелл-Манн состоит членом Американской академии наук и искусств, а также иностранным членом Лондонского королевского общества. За свои заслуги пред наукой он удостоен премии Дэнни Хейнемана Американского физического общества (1959), премии по физике Эрнеста Орландо Лоуренса Комиссии по атомной энергии Соединённых Штатов (1966), медали Франклина Франклиновского института (1967) и медали Джона Дж. Карти Национальной академии наук США (1968).
ЛИТЕРАТУРА
Александер Ф., Селесник Ш. Человек и его душа. Познание и врачевание от древности и до наших дней. М., 1995.
Андрусев М. М., Табер А. М. Н. Д. Зелинский. М., 1984.
Баландин Р. К. Вернадский: жизнь, мысль, бессмертие. М., 1979.
Бароян О. В. Блики на портрете. М., 1980.
Белов А. В. Обвинённые в ереси. М., 1973.
Библиотека Флорентия Павленкова. Т. 8, 10. Челябинск, 1995.
Болховитинов В. Н. Столетов. М., 1965.
Бобров Л. В. Тени невидимого света. М., 1964.
Бочков Н. П. Гены и судьбы. М., 1990.
Бублейников Ф. Д. Галилео Галилей. М., 1964.
Вер Г. Карл Гусав Юнг. Челябинск, 1998.
Великие русские люди. (Володин В., сост.) М., 1984.
Волошинов А. В. Пифагор. М., 1993.
Вяльцев А. Н., Григорян А. Т. Г. Герц. М., 1968.
Гернек Ф. Пионеры атомного века.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203