Теперь есть и свободное время. Оно отдаётся попыткам решить уже поставленные математические задачи.
Лекции профессора Московского университета Николая Николаевича Лузина, по свидетельству современников, были выдающимся явлением. У Лузина никогда не было заранее предписанной формы изложения. И его лекции ни в коем случае не могли служить образцом для подражания. У него было редкое чувство аудитории. Он, как настоящий актёр, выступающий на театральной сцене и прекрасно чувствующий реакцию зрительного зала, имел постоянный контакт со студентами. Профессор умел приводить студентов в соприкосновение с собственной математической мыслью, открывая таинства своей научной лаборатории. Приглашал к совместной духовной деятельности, к сотворчеству.
А какой это был праздник, когда Лузин приглашал учеников к себе домой на знаменитые «среды»! Беседы за чашкой чая о научных проблемах… Впрочем, почему обязательно о научных? Тем для разговора было предостаточно. Он умел зажечь молодёжь желанием научного подвига, привить веру в собственные силы, и через это чувство приходило другое — понимание необходимости полной отдачи любимому делу.
Колмогоров впервые обратил на себя внимание профессора на одной лекции. Лузин, как всегда, вёл занятия, постоянно обращаясь к слушателям с вопросами, заданиями. И когда он сказал: «Давайте строить доказательство теоремы, исходя из следующего предположения…» — в аудитории поднялась рука Андрея Колмогорова: «Профессор, оно ошибочно». За вопросом «почему» последовал краткий ответ первокурсника. Довольный Лузин кивнул: «Что ж, приходите на кружок, доложите нам свои соображения более развёрнуто».
«Хотя моё достижение было довольно детским, оно сделало меня известным в „Лузитании“», — вспоминал Андрей Николаевич.
Но через год серьёзные результаты, полученные восемнадцатилетним второкурсником Андреем Колмогоровым, обратили на себя настоящее внимание «патриарха». С некоторой торжественностью Николай Николаевич предлагает Колмогорову приходить в определённый день и час недели, предназначенный для учеников его курса. Подобное приглашение, по понятиям «Лузитании», следовало расценивать как присвоение почётного звания ученика. Как признание способностей.
Первые публикации Колмогорова были посвящены проблемам дескриптивной и метрической теории функций. Наиболее ранняя из них появилась в 1923 году. Обсуждавшиеся в середине двадцатых годов повсюду, в том числе в Москве, вопросы оснований математического анализа и тесно с ними связанные исследования по математической логике привлекли внимание Колмогорова почти в самом начале его творчества. Он принял участие в дискуссиях между двумя основными противостоявшими тогда методологическими школами — формально-аксиоматической (Д. Гильберт) и интуиционистской (Л. Э. Я. Броуэр и Г. Вейль). При этом он получил совершенно неожиданный первоклассный результат, доказав в 1925 году, что все известные предложения классической формальной логики при определённой интерпретации переходят в предложения интуиционистской логики. Глубокий интерес к философии математики Колмогоров сохранил навсегда.
Многие годы тесного и плодотворного сотрудничества связывали его с А. Я. Хинчиным, который в то время начал разработку вопросов теории вероятностей. Она и стала областью совместной деятельности учёных.
Наука «о случае» ещё со времён Чебышёва являлась как бы русской национальной наукой. Её успехи преумножили советские математики.
Особое значение для приложения математических методов к естествознанию и практическим наукам имел закон больших чисел. Разыскать необходимые и достаточные условия, при которых он имеет место, — вот в чём заключался искомый результат. Крупнейшие математики многих стран на протяжении десятилетий безуспешно старались его получить. В 1926 году эти условия были получены аспирантом Колмогоровым.
Андрей Николаевич до конца своих дней считал теорию вероятностей главной своей специальностью, хотя областей математики, в которых он работал, можно насчитать добрых два десятка.
Но тогда только начиналась дорога Колмогорова и его друзей в науке. Они много работали, но не теряли чувства юмора. В шутку называли уравнения с частными производными «уравнениями с несчастными производными», такой специальный термин, как конечные разности, переиначивался в «разные конечности», а теория вероятностей — в «теорию неприятностей».
Норберт Винер, отец кибернетики, свидетельствовал: «…Хинчин и Колмогоров, два наиболее видных русских специалиста по теории вероятностей, долгое время работали в той же области, что и я. Более двадцати лет мы наступали друг другу на пятки: то они доказывали теорему, которую я вот-вот готовился доказать, то мне удавалось прийти к финишу чуть-чуть раньше их».
И ещё одно признание Винера, которое он однажды сделал журналистам: «Вот уже в течение тридцати лет, когда я читаю труды академика Колмогорова, я чувствую, что это и мои мысли. Это всякий раз то, что я и сам хотел сказать».
В 1930 году Колмогоров стал профессором МГУ, с 1933 по 1939 год был ректором Института математики и механики МГУ, многие годы руководил кафедрой теории вероятностей и лабораторией статистических методов. В 1935 году Колмогорову была присвоена степень доктора физико-математических наук, в 1939 году он был избран членом АН СССР. Незадолго до начала Великой Отечественной войны Колмогорову и Хинчину за работы по теории вероятностей была присуждена Государственная премия.
А 23 июня 1941 года состоялось расширенное заседание Президиума Академии наук СССР. Принятое на нём решение кладёт начало перестройке деятельности научных учреждений. Теперь главное — военная тематика: все силы, все знания — победе. Советские математики по заданию Главного артиллерийского управления армии ведут сложные работы в области баллистики и механики. Колмогоров, используя свои исследования по теории вероятностей, даёт определение наивыгоднейшего рассеивания снарядов при стрельбе.
Война завершилась, и Колмогоров возвращается к мирным исследованиям. Трудно даже кратко осветить вклад Колмогорова в другие области математики — общую теорию операций над множествами, теорию интеграла, теорию информации, гидродинамику, небесную механику и т. д. вплоть до лингвистики. Во всех этих дисциплинах многие методы и теоремы Колмогорова являются, по общему признанию, классическими, а влияние его работ, как и работ его многочисленных учеников, среди которых немало выдающихся математиков, на общий ход развития математики чрезвычайно велико.
Когда одного из молодых коллег Колмогорова спросили, какие чувства он испытывает по отношению к своему учителю, тот ответил:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
Лекции профессора Московского университета Николая Николаевича Лузина, по свидетельству современников, были выдающимся явлением. У Лузина никогда не было заранее предписанной формы изложения. И его лекции ни в коем случае не могли служить образцом для подражания. У него было редкое чувство аудитории. Он, как настоящий актёр, выступающий на театральной сцене и прекрасно чувствующий реакцию зрительного зала, имел постоянный контакт со студентами. Профессор умел приводить студентов в соприкосновение с собственной математической мыслью, открывая таинства своей научной лаборатории. Приглашал к совместной духовной деятельности, к сотворчеству.
А какой это был праздник, когда Лузин приглашал учеников к себе домой на знаменитые «среды»! Беседы за чашкой чая о научных проблемах… Впрочем, почему обязательно о научных? Тем для разговора было предостаточно. Он умел зажечь молодёжь желанием научного подвига, привить веру в собственные силы, и через это чувство приходило другое — понимание необходимости полной отдачи любимому делу.
Колмогоров впервые обратил на себя внимание профессора на одной лекции. Лузин, как всегда, вёл занятия, постоянно обращаясь к слушателям с вопросами, заданиями. И когда он сказал: «Давайте строить доказательство теоремы, исходя из следующего предположения…» — в аудитории поднялась рука Андрея Колмогорова: «Профессор, оно ошибочно». За вопросом «почему» последовал краткий ответ первокурсника. Довольный Лузин кивнул: «Что ж, приходите на кружок, доложите нам свои соображения более развёрнуто».
«Хотя моё достижение было довольно детским, оно сделало меня известным в „Лузитании“», — вспоминал Андрей Николаевич.
Но через год серьёзные результаты, полученные восемнадцатилетним второкурсником Андреем Колмогоровым, обратили на себя настоящее внимание «патриарха». С некоторой торжественностью Николай Николаевич предлагает Колмогорову приходить в определённый день и час недели, предназначенный для учеников его курса. Подобное приглашение, по понятиям «Лузитании», следовало расценивать как присвоение почётного звания ученика. Как признание способностей.
Первые публикации Колмогорова были посвящены проблемам дескриптивной и метрической теории функций. Наиболее ранняя из них появилась в 1923 году. Обсуждавшиеся в середине двадцатых годов повсюду, в том числе в Москве, вопросы оснований математического анализа и тесно с ними связанные исследования по математической логике привлекли внимание Колмогорова почти в самом начале его творчества. Он принял участие в дискуссиях между двумя основными противостоявшими тогда методологическими школами — формально-аксиоматической (Д. Гильберт) и интуиционистской (Л. Э. Я. Броуэр и Г. Вейль). При этом он получил совершенно неожиданный первоклассный результат, доказав в 1925 году, что все известные предложения классической формальной логики при определённой интерпретации переходят в предложения интуиционистской логики. Глубокий интерес к философии математики Колмогоров сохранил навсегда.
Многие годы тесного и плодотворного сотрудничества связывали его с А. Я. Хинчиным, который в то время начал разработку вопросов теории вероятностей. Она и стала областью совместной деятельности учёных.
Наука «о случае» ещё со времён Чебышёва являлась как бы русской национальной наукой. Её успехи преумножили советские математики.
Особое значение для приложения математических методов к естествознанию и практическим наукам имел закон больших чисел. Разыскать необходимые и достаточные условия, при которых он имеет место, — вот в чём заключался искомый результат. Крупнейшие математики многих стран на протяжении десятилетий безуспешно старались его получить. В 1926 году эти условия были получены аспирантом Колмогоровым.
Андрей Николаевич до конца своих дней считал теорию вероятностей главной своей специальностью, хотя областей математики, в которых он работал, можно насчитать добрых два десятка.
Но тогда только начиналась дорога Колмогорова и его друзей в науке. Они много работали, но не теряли чувства юмора. В шутку называли уравнения с частными производными «уравнениями с несчастными производными», такой специальный термин, как конечные разности, переиначивался в «разные конечности», а теория вероятностей — в «теорию неприятностей».
Норберт Винер, отец кибернетики, свидетельствовал: «…Хинчин и Колмогоров, два наиболее видных русских специалиста по теории вероятностей, долгое время работали в той же области, что и я. Более двадцати лет мы наступали друг другу на пятки: то они доказывали теорему, которую я вот-вот готовился доказать, то мне удавалось прийти к финишу чуть-чуть раньше их».
И ещё одно признание Винера, которое он однажды сделал журналистам: «Вот уже в течение тридцати лет, когда я читаю труды академика Колмогорова, я чувствую, что это и мои мысли. Это всякий раз то, что я и сам хотел сказать».
В 1930 году Колмогоров стал профессором МГУ, с 1933 по 1939 год был ректором Института математики и механики МГУ, многие годы руководил кафедрой теории вероятностей и лабораторией статистических методов. В 1935 году Колмогорову была присвоена степень доктора физико-математических наук, в 1939 году он был избран членом АН СССР. Незадолго до начала Великой Отечественной войны Колмогорову и Хинчину за работы по теории вероятностей была присуждена Государственная премия.
А 23 июня 1941 года состоялось расширенное заседание Президиума Академии наук СССР. Принятое на нём решение кладёт начало перестройке деятельности научных учреждений. Теперь главное — военная тематика: все силы, все знания — победе. Советские математики по заданию Главного артиллерийского управления армии ведут сложные работы в области баллистики и механики. Колмогоров, используя свои исследования по теории вероятностей, даёт определение наивыгоднейшего рассеивания снарядов при стрельбе.
Война завершилась, и Колмогоров возвращается к мирным исследованиям. Трудно даже кратко осветить вклад Колмогорова в другие области математики — общую теорию операций над множествами, теорию интеграла, теорию информации, гидродинамику, небесную механику и т. д. вплоть до лингвистики. Во всех этих дисциплинах многие методы и теоремы Колмогорова являются, по общему признанию, классическими, а влияние его работ, как и работ его многочисленных учеников, среди которых немало выдающихся математиков, на общий ход развития математики чрезвычайно велико.
Когда одного из молодых коллег Колмогорова спросили, какие чувства он испытывает по отношению к своему учителю, тот ответил:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203