ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Такие случаи, очень многочисленные, придают всем качественным признакам элементов некоторую степень шаткости, хотя и служат к облегчению и, так сказать, оживлению всей системы знакомства с элементами, указывая в них признаки индивидуальности, позволяющей предугадывать еще не наблюденные свойства простых и сложных тел, образующихся из элементов. Эти сложные индивидуальные особенности элементов придавали чрезвычайный интерес открытию новых элементов, не позволяя никоим образом сколько-нибудь предвидеть сумму физических и химических признаков, свойственных веществам, ими образуемым. Все, чего можно было достигать при изучении элементов, ограничивалось сближением в одну группу наиболее сходных, что уподобляло все это знакомство с систематикою растений или животных, т.е. изучение было рабским, описательным и не позволяющим делать какие-либо предсказания по отношению к элементам, еще не бывшим в руках исследователей. Ряд иных свойств, которые мы назовем количественными, выступил в надлежащем виде для химических элементов только со времени Лорана и Жерара, т.е. с 50-х годов текущего столетия, когда была подвергнута исследованию и обобщению способность взаимного реагирования со стороны состава частиц и укрепилось представление о двуобъемных частицах, т.е. о том, что в парообразном состоянии, пока нет разложения, всякие частицы (т.е. количества веществ, вступающие в химическое взаимодействие между собою) всех тел занимают такой же объем, какой занимают два объема водорода при той же температуре и том же давлении. Не входя здесь в изложение и развитие начал, укрепившихся при этом, ныне общепринятом представлении, достаточно сказать, что с развитием унитарной или частичной химии в последние 40 или 50 лет получилась твердость, прежде не существовавшая, как в определении атомных весов элементов, так и в определении состава частиц простых и сложных тел, ими образуемых, и стала очевидною причина различия свойств и реакций обыкновенного кислорода О2 и озона O3, хотя оба содержат только кислород, как и разность маслородного газа (этилена) C2H4 от жидкого цетена С16Н32, хотя оба содержат на 12 весовых частей углерода по 2 весовых части водорода. В эту многознаменательную эпоху химии выступило в ней для каждого хорошо обследованного элемента два более или менее точных количественных признака или свойства: вес атома и тип (форма) состава частиц соединений, им образуемых, хотя ничто не указывало еще ни на взаимную связь этих признаков, ни на соотношение их с другими, особенно качественными, свойствами элементов. Вес атома, свойственный элементу, т.е. неделимое, наименьшее относительное количество его, входящее в состав частиц всех его соединений, особенно был важен для изучения элементов и составлял их индивидуальную характеристику, пока чисто эмпирического свойства, так как для определения атомного веса элемента надобно узнать не только эквивалент или относительный весовой состав некоторых его соединений с элементами, вес атома которых известен из иных определений, или условно принят известным, но и определить (по реакциям, плотностям паров и т.п.) частичный вес и состав хоть одного, а лучше многих из соединений, им образуемых. Этот путь опыта столь сложен, длинен и требует такого совершенно очищенного и тщательно изученного материла из числа соединений элемента, что для многих, особенно для редких в природе элементов, при отсутствии особо понудительных причин, оставалось много сомнений относительно истинной величины атомного веса, хотя весовой состав (эквивалент) некоторых соединений их и был установлен; таковы, напр., были уран, ванадий, торий, бериллий, церий и др. При чисто эмпирическом значении веса атома не было и особого интереса углубляться в этот предмет для элементов, редко подвергаемых исследованию, тем не менее для большой массы обыкновеннейших элементов величины атомных весов можно было уже в начале 60-х годов считать твердо установленными, особенно после того, как Канницаро твердо установил для многих металлов, напр. Са, Ва, Zn, Fe, Сu и т.п. явное их отличие от К, Na, Ag и т.п., показав, что частицы напр. хлористых соединений первых из них содержат вдвое более хлора, чем вторых, т.е. что Са, Ва, Zn и т.д. дают CaCI2, BaCI2 и т.д., т.е. двуатомны (двуэквивалентны или двувалентны), тогда как K, Na и т.п. одноатомны (одноаквивалентны), т.е. образуют KCI, NaCI и т.п. В эпоху около середины текущего столетия вес атома элементов послужил уже одним из признаков, по которым стали сличать сходственные элементы групп.
Другой из важнейших количественных признаков элементов представляет состав частиц высших соединений, им образуемых. Здесь более простоты и ясности, потому что Дальтонов закон кратных отношений (или простоты и цельности числа атомов, входящих в состав частиц) уже заставляет ждать только немногих чисел и разобраться в них было легче. Обобщение выразилось в учении об атомности элементов или их валентности. Водород есть элемент одноатомный, ибо дает по одному соединению HX с другими одноатомными же элементами, представителем которых считался хлор, образуя НСl. Кислород двуатомен, потому что дает H2O или соединяется вообще с двумя X, если под Х подразумевать одноатомные элементы. Так получают НСlO, Сl2О и т.д. В этом смысле азот считается трехатомным, так как дает NH3, NCl3; углерод четырехатомным, потому что образует СН4, СО2 и т.д. Сходные элементы одной группы, напр. галоиды, дают и сходные частицы соединений, т.е. имеют одну и ту же атомность. Через все это изучение элементов очень сильно двинулось вперед. Но было немало трудностей разного рода. Особую трудность представили соединения кислорода, как элемента двуатомного, способного замещать и удерживать X2, в силу чего совершенно понятно образование Cl2O, HClO и т.п. соединений с одноатомными элементами. Однако, тот же кислород дает не только НСlO, но и HClO2, НСlO3 и НСlO4 (хлорная кислота), точно также как не только H2O, но и H2O2 (перекись водорода). Для объяснения пришлось признать, что кислород, в силу своей двуатомности, обладая двумя сродствами (как говорят), способен втиснуться в каждую частицу и встать между всякими двумя атомами, в нее входящими. Трудностей при этом получилось много, но остановимся на двух, помоему, важнейших. Во-первых, оказалась как бы грань О4 для числа кислородных атомов, входящих в частицу, а этой грани нельзя ждать на основании допущенного. При том, приближаясь к грани, получались часто соединения не менее, а более прочные, чего уже вовсе нельзя допустить при представлении о втиснутых атомах кислорода, так как чем более их взойдет, тем вероятнее было иметь непрочность связей. А между тем НСlO4 прочнее НСlO3, эта последняя прочнее НСlO2 и НСlO, тогда как НСl опять тело химически очень прочное.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377