ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Но ведь мы не задумываемся о сложности, когда берем с собой на работу или в поездку термос с горячим чаем. Не пугаемся трудностей, — прокладывая трубопроводы от теплоэлектроцентралей, с горячей водой и паром. Не шарахаемся от батарей парового отопления у себя дома. А ведь горячая вода обжигает примерно так же, как и жидкий, водород.
Криогенные емкости — те же термосы. Они существуют много лет и прошли всестороннюю проверку." Недавно в секторе механики-неоднородных сред АН СССР был проведен такой эксперимент: на серийном микроавтобусе РАФ-2203 в багажнике были установлены два криогенных бака с жидким водородом. Под давлением 1, 5 атмосферы водород перекачивался в испаритель, — где превращался в газ и по трубке поступал в карбюратор. Здесь, смешиваясь с обычным бензином, он поступал в двигатель. Установка прекрасно работала. «Рафик» бегал куда бодрее, чем на обычном бензине. И при этом «чихал» менее удушливо.
Опытный автолюбитель осторожно спросит: «А если авария?» Ну и что, что авария? Жидкий водород выльется из баков на землю и тут же испарится, тогда как бензину при горячем моторе вспыхнуть в сходной ситуации ничего не стоит.
В общем, серьезных недостатков у водородного топлива по сравнению с традиционным нет! Зато какие преимущества! Очень хотелось бы надеяться, что уже в ближайшие годы экологически чистое водородное топливо серьезно потеснит своих ископаемых конкурентов. И нет сомнения, что развитие этой промышленности продвинет вперед и положение дел с металлической фазой водорода.
Глава 2

Время свершений
Сегодня много говорят о получении энергии с помощью Солнца, ветра, морских волн, об извлечении энергии из недр, за счет использования внутреннего тепла Земли, о приручении морских приливов и о выведении электростанций за пределы атмосферы. Но пока… Пока что более 80 процентов всей электрической энергии дают обыкновенные тепловые станции — ТЭС, ГРЭС и ТЭЦ, работающие на сжигаемом топливе и выбрасывающие в атмосферу не только газы и вредные примеси, но и большую часть получаемого тепла. И у специалистов есть предположение, что в предвидимом будущем, в ближайшие 20-25 лет, существующее положение в энергетике практически не изменится. А если и изменится, то незначительно.
У нас в стране долгое время развитие сети тепловых, электростанций осложнялось тем, что промышленные центры — главные потребители энергии были сосредоточены в европейской части государства, а энергетические ресурсы — преимущественно в азиатской. Поэтому топливный баланс был очень напряженным. Экономисты старались ориентировать его на большее потребление нефти и газа, а также мазута. Их легче было доставлять.
В последние годы положение изменилось. Газ и нефть все больше используются на технологические нужды промышленностью. Вместе с тем осваиваются топливные ресурсы Тюменской области, Канско-Ачинские разработки для энергетики Сибири. Значит снова должен повыситься интерес строителей электростанций к углю. Тем более что геологические ресурсы твердого топлива почти в Зо раз превосходят запасы нефти. Но жидкое топливо во всех отношениях лучше твердого. В нем меньше вредных примесей, больше водорода. Да и сжигать жидкое топливо значительно удобнее. Не говоря уж о том, что оно не оставляет после себя гор золы и шлака. Все эти соображения привели к тому, что уже чуть не полвека назад был в принципе известен пропдес получения из угля синтетического топлива. Напомню, что для превращения органической массы угля в вещество подобное нефти специалистам-химикам пришлось последовательно решать три задачи: первая заключалась в удалении лишнего кислорода, а вместе с ним и таких вредных для топлива примесей, как сера и азот; второе — добавление в органическую массу водорода, до соотношения водорода и углерода, имеющихся в нефти; третья аадача заключалась к разукрупнении больших молекул, составляющих органическую массу угля.
Все эти обстоятельства, требовавшие достаточно сложной технологии, приводили к росту себестоимости синтетического топлива. В 40-х годах способ был признан нерентабельным. Большинство предприятий реконструировали в нефтеперерабатывающие и нефтехимические заводы.
Но прошло время, и ситуация изменилась. Природное жидкое топливо дорожает. И снова на повестку дня встает синтетическое топливо. Конечно, промышленные предприятия по его производству целесообразно строить только в районах месторождений угля, позволяющих организовать дешевую открытую добычу. В нашей стране создана программа использования дешевых углей Канско-Ачинского бассейна и в этом направлении. Она предусматривает в течение 80-х годов разработку технико-экономических обоснований на сооружение первого крупного промышленного предприятия, с тем чтобы приступить к его строительству в двенадцатой пятилетке.
Ну, а что же представляет собой современная теплоэлектростанция? Давайте вспомним ее упрощенную схему: прежде всего — топка, в нее подаются топливо и окислитель. Затем — котел. В нем вода превращается в пар с температурой около 550° С. Этот температурный предел считается наиболее выгодным. Пар под высоким давлением поступает в неподвижно укрепленные металлические каналы сопла турбины. В них температура и давление пара уменьшаются, но зато увеличивается скорость движения его потока. Теперь струя пара с огромной скоростью, часто превышающей скорость звука, вырывается из coпел и, меняя направление по криволинейному каналу, давит на лопатки турбины, приводя весь ротор во вращение. На одном валу с ротором турбины сидит и ротор электрического генератора. Следовательно, приходит во вращение вся система и раскручивается до постоянной скорости, равной, как правило, 3 тысячам оборотов в минуту. Такая скорость определяется выбранным стандартом частоты переменного тока. В нашей стране она равна пятидесяти периодам в секунду. Пятьдесят периодов, помноженное на шестьдесят секунд, как раз и дают 3 тысячи оборотов в минуту. Все понятно.
Сейчас паровые турбины стали настолько быстроходны, высокозкономичны и обладают таким значительным ресурсом работы, что они вполне конкурентоспособны с гидрогенераторами, работающими в значительно более щадящем режиме. Мощность современных паровых турбин в одновальном исполнении достигает 1 миллиона 200 тысяч киловатт! И это еще не предел…
После турбогенератора, совершив полезную работу, пар уже под низким давлением уходит в конденсатор, охлаждается, превращается в воду и снова насосами подается в котел. Обычно тепловые электростанции строят поблизости от крупных водных источников — рек или озер, Дело здесь в том, что на каждый килограмм конденсируемого пара приходится расходовать около 60 килограммов холодной воды.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76