Это предсказуемый результат.
Поиграв немного с вышеприведенным, я решил проверить что будет, если подставить в это тождест-во золотое сечение?. Опять-таки, если существует вероятность связи математики единства и универсальной системы двенадцатиричного счисления, то логично было бы предположить, что она оказалась бы в высшей степени симметричной. Это должно быть так предсказуемо.
Поскольку я искал симметрию с числом 12, я также должен был проверить другие числа, чтобы удо-стовериться, что найден был НЕ общий принцип, который справедлив для всех чисел. Он должен быть применим только к числу 12. Поиск отношений выявил следующее:
12? (+?) = 8,145898034…; 11? (+?) = 7,145898034…; 10? (+?) = 6,145898034… и т.п.
Как видите, каждое число на единицу меньше, чем предыдущее, и у всех них присутствует общая часть 0,145898034… Проверка квадратных корней этих чисел не дала ничего особого, или каких-либо со-отношений между числами, за исключением 12. Говоря короче, 0,145898034… не играет особой роли для любых целых чисел, за исключением 12, где симметрия проявляется чрезвычайно наглядно??!
Вот четыре из этих отношений:
(+?)? = 1,
Ф [?] = 1,
(1 / Ф) + =,
(+ Ф)2? 12 = или (+ Ф)2? = 12.
Также,
12? (+?) = 8 + [1? (1 /?)]2,
(+?)2? (+?) = 11,
(? /)? (? /)2 = 0,2.
Если учесть, что в десятичной системе 9 является последним целым числом перед новым повторени-ем ряда, которое неотъемлемо присутствует в симметриях десятичной системы счисления, то же должно относиться и к числу 11 в двенадцатиричной системе счисления, как видно из предыдущей страницы.
Резюме
Подводя итог, вспомните, что мы проделали. Мы нашли, что существует класс чисел, порождаемый Единством и Диадой. Мы нашли, что в любой системе счисления в возрастающей последовательности от-сутствует одно целое число, и это свойственно для стандартных математических операций. Это в точности соответствует классу чисел, порождаемых Единством и Диадой. Единство (1) и Диада (2) и среднее цело-численное основания системы счисления (5) играют важную роль во всех математических операциях. Зо-лотое сечение является геометрической константой. Независимо от того, в какой системе счисления оно описывается, оно остается одним и тем же, в какую бы часть Вселенной мы ни отправились. Геометриче-ская константа (?) в десятичной системе счисления выражается через числа 1, 2 и 5, и все числа сводятся к нему.
В отношении обоснованности двенадцатиричной системы счисления особо следует подчеркнуть, что мы нашли алгебраическое тождество, в котором, при работе в десятичной системе, при x = 5, иррациональ-ные части всех квадратных корней «уничтожаются» и положительными границами десятичного ряда явля-ется двенадцатиричный цикл. Мы обнаружили, что подстановка золотого сечения в уравнения подобного типа привели к появлению ряда, обладающего самой совершенной из возможных геометрических симмет-рии, справедливой только для целого числа 12, и дополнительных симметричных рядов, справедливых для узловых целых чисел двенадцатиричной системы. Эти же формулы не дают сколько-нибудь интересных результатов для других целых чисел, показывая, что золотое сечение является особенностью одних лишь операций в двенадцатиричной системе, при помощи двух независимых методов числового и алгебраиче-ского вычисления и стандартных условий деления круга в нечисловой евклидовой геометрии.
Если констатировать факт, что ВСЕ ПРОСТЫЕ ЧИСЛА, большие 3, можно представить в форме 6n±1, то для автора этой статьи кажется непостижимым, что можно, опираясь на логику, выступать против выбора двенадцатиричной системы счисления в качестве универсальной и не произвольной системы для выражения теории чисел.
Вопрос обоснованности двенадцатиричной системы счисления следует вынести на всеобщее рас-смотрение, чтобы ему можно было дать компетентное опровержение. По мнению автора, предоставленные доказательства веско свидетельствуют в пользу того, что двенадцатиричную систему счисления следует принять в качестве «универсальной» и что вся наша система теории чисел, основывающаяся на предполо-жении, что к любому числу всегда можно прибавить единицу (N + 1), содержит в себе серьезную ошибку на уровне ее основ. Продолжать применять математику, основываясь на традиционно принятом прямоли-нейном подходе, означает добровольно отбросить «объективные доказательства» в пользу традиционных предписаний.
Желающим узнать больше об этих и других математических доказательствах следует написать Ли Кэрроллу. Если откликов будет достаточно много, мы издадим книгу, которую можно назвать «учебником математики Новой Эры для начинающих». Человечество определенно не может рассчитывать на «смену парадигмы» до тех пор, пока не будет откорректирована математика. Математика — это основа всех осталь-ных логических операций. Если математика не изменится, не наступит никакой Новой Эры, а будет лишь новая витрина в старой лавке. Результат этих математических открытий заключается в том, что впервые в истории человечества можно показать: то, что до сих пор считалось «символом веры», на самом деле в приказном порядке поддерживалось логикой. Теперь можно будет разрешить огромное количество вопро-сов, возникающих перед теологией, философией и этикой, которые были неразрешимыми до сих пор. И логика дает на них удивительные ответы. Лично я пришел к поразительному и, я полагаю, неизбежному заключению по поводу природы самой физической Вселенной. И остается сказать: добро пожаловать в на-стоящую Новую Эру!
Искренне ваш,
Джеймс Д. Уотт
Глава одиннадцатая Моя книга разваливается!
Случайностей не бывает
Книги Крайона разваливаются у вас в руках? Вот рассказ о том, почему так произошло. Возможно, вы иначе посмотрите на свою распавшуюся книгу после того, как прочтете это.
Итак, в понедельник утром я выхожу из дому и направляюсь в студию звукозаписи. Случайно я на-ступаю на спящую кошку, которая дико взвизгивает, взмывает на восемь футов в воздух и сбивает с крючка висящий на нем горшок с цветком. Я наклоняюсь, чтобы успокоить кошку (которую моя жена Джен назва-ла Жасмин), и мне на голову падает цветок (конечно же, только что политый). Цветок (который Джен на-звала Августой), не удовлетворяясь тем, что ударил меня, обливает мою чистую одежду. Слыша шум, Джен выбегает на крыльцо, чтобы увидеть, все ли в порядке с Жасмин и Августой (она знает, что я-то бессмер-тен… по крайней мере, я ей так говорю).
Итак, я двигаюсь назад, в дом, уже опоздав на работу, шепча всякие вещи вроде «черт возьми» и «чтоб тебя!» Естественно, я не могу войти в дом через парадную дверь, поскольку теперь я весь перепач-кан. Я должен идти на задний двор (у нас есть правило, которое гласит, что запачканные «каналы» должны попадать в дом через черный ход, который Джен называет «грязным ходом»).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
Поиграв немного с вышеприведенным, я решил проверить что будет, если подставить в это тождест-во золотое сечение?. Опять-таки, если существует вероятность связи математики единства и универсальной системы двенадцатиричного счисления, то логично было бы предположить, что она оказалась бы в высшей степени симметричной. Это должно быть так предсказуемо.
Поскольку я искал симметрию с числом 12, я также должен был проверить другие числа, чтобы удо-стовериться, что найден был НЕ общий принцип, который справедлив для всех чисел. Он должен быть применим только к числу 12. Поиск отношений выявил следующее:
12? (+?) = 8,145898034…; 11? (+?) = 7,145898034…; 10? (+?) = 6,145898034… и т.п.
Как видите, каждое число на единицу меньше, чем предыдущее, и у всех них присутствует общая часть 0,145898034… Проверка квадратных корней этих чисел не дала ничего особого, или каких-либо со-отношений между числами, за исключением 12. Говоря короче, 0,145898034… не играет особой роли для любых целых чисел, за исключением 12, где симметрия проявляется чрезвычайно наглядно??!
Вот четыре из этих отношений:
(+?)? = 1,
Ф [?] = 1,
(1 / Ф) + =,
(+ Ф)2? 12 = или (+ Ф)2? = 12.
Также,
12? (+?) = 8 + [1? (1 /?)]2,
(+?)2? (+?) = 11,
(? /)? (? /)2 = 0,2.
Если учесть, что в десятичной системе 9 является последним целым числом перед новым повторени-ем ряда, которое неотъемлемо присутствует в симметриях десятичной системы счисления, то же должно относиться и к числу 11 в двенадцатиричной системе счисления, как видно из предыдущей страницы.
Резюме
Подводя итог, вспомните, что мы проделали. Мы нашли, что существует класс чисел, порождаемый Единством и Диадой. Мы нашли, что в любой системе счисления в возрастающей последовательности от-сутствует одно целое число, и это свойственно для стандартных математических операций. Это в точности соответствует классу чисел, порождаемых Единством и Диадой. Единство (1) и Диада (2) и среднее цело-численное основания системы счисления (5) играют важную роль во всех математических операциях. Зо-лотое сечение является геометрической константой. Независимо от того, в какой системе счисления оно описывается, оно остается одним и тем же, в какую бы часть Вселенной мы ни отправились. Геометриче-ская константа (?) в десятичной системе счисления выражается через числа 1, 2 и 5, и все числа сводятся к нему.
В отношении обоснованности двенадцатиричной системы счисления особо следует подчеркнуть, что мы нашли алгебраическое тождество, в котором, при работе в десятичной системе, при x = 5, иррациональ-ные части всех квадратных корней «уничтожаются» и положительными границами десятичного ряда явля-ется двенадцатиричный цикл. Мы обнаружили, что подстановка золотого сечения в уравнения подобного типа привели к появлению ряда, обладающего самой совершенной из возможных геометрических симмет-рии, справедливой только для целого числа 12, и дополнительных симметричных рядов, справедливых для узловых целых чисел двенадцатиричной системы. Эти же формулы не дают сколько-нибудь интересных результатов для других целых чисел, показывая, что золотое сечение является особенностью одних лишь операций в двенадцатиричной системе, при помощи двух независимых методов числового и алгебраиче-ского вычисления и стандартных условий деления круга в нечисловой евклидовой геометрии.
Если констатировать факт, что ВСЕ ПРОСТЫЕ ЧИСЛА, большие 3, можно представить в форме 6n±1, то для автора этой статьи кажется непостижимым, что можно, опираясь на логику, выступать против выбора двенадцатиричной системы счисления в качестве универсальной и не произвольной системы для выражения теории чисел.
Вопрос обоснованности двенадцатиричной системы счисления следует вынести на всеобщее рас-смотрение, чтобы ему можно было дать компетентное опровержение. По мнению автора, предоставленные доказательства веско свидетельствуют в пользу того, что двенадцатиричную систему счисления следует принять в качестве «универсальной» и что вся наша система теории чисел, основывающаяся на предполо-жении, что к любому числу всегда можно прибавить единицу (N + 1), содержит в себе серьезную ошибку на уровне ее основ. Продолжать применять математику, основываясь на традиционно принятом прямоли-нейном подходе, означает добровольно отбросить «объективные доказательства» в пользу традиционных предписаний.
Желающим узнать больше об этих и других математических доказательствах следует написать Ли Кэрроллу. Если откликов будет достаточно много, мы издадим книгу, которую можно назвать «учебником математики Новой Эры для начинающих». Человечество определенно не может рассчитывать на «смену парадигмы» до тех пор, пока не будет откорректирована математика. Математика — это основа всех осталь-ных логических операций. Если математика не изменится, не наступит никакой Новой Эры, а будет лишь новая витрина в старой лавке. Результат этих математических открытий заключается в том, что впервые в истории человечества можно показать: то, что до сих пор считалось «символом веры», на самом деле в приказном порядке поддерживалось логикой. Теперь можно будет разрешить огромное количество вопро-сов, возникающих перед теологией, философией и этикой, которые были неразрешимыми до сих пор. И логика дает на них удивительные ответы. Лично я пришел к поразительному и, я полагаю, неизбежному заключению по поводу природы самой физической Вселенной. И остается сказать: добро пожаловать в на-стоящую Новую Эру!
Искренне ваш,
Джеймс Д. Уотт
Глава одиннадцатая Моя книга разваливается!
Случайностей не бывает
Книги Крайона разваливаются у вас в руках? Вот рассказ о том, почему так произошло. Возможно, вы иначе посмотрите на свою распавшуюся книгу после того, как прочтете это.
Итак, в понедельник утром я выхожу из дому и направляюсь в студию звукозаписи. Случайно я на-ступаю на спящую кошку, которая дико взвизгивает, взмывает на восемь футов в воздух и сбивает с крючка висящий на нем горшок с цветком. Я наклоняюсь, чтобы успокоить кошку (которую моя жена Джен назва-ла Жасмин), и мне на голову падает цветок (конечно же, только что политый). Цветок (который Джен на-звала Августой), не удовлетворяясь тем, что ударил меня, обливает мою чистую одежду. Слыша шум, Джен выбегает на крыльцо, чтобы увидеть, все ли в порядке с Жасмин и Августой (она знает, что я-то бессмер-тен… по крайней мере, я ей так говорю).
Итак, я двигаюсь назад, в дом, уже опоздав на работу, шепча всякие вещи вроде «черт возьми» и «чтоб тебя!» Естественно, я не могу войти в дом через парадную дверь, поскольку теперь я весь перепач-кан. Я должен идти на задний двор (у нас есть правило, которое гласит, что запачканные «каналы» должны попадать в дом через черный ход, который Джен называет «грязным ходом»).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85