ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Эта идея впервые была высказана английским физиком Полем А. М. Дираком (1902–1984).
Это было бы очень медленное уменьшение, и его результаты не были бы заметны людям на протяжении многих миллионов лет, но результат постепенно накапливался бы. Солнце, например, удерживается в целостности благодаря гравитационному полю. Если бы гравитационная сила стала слабее, Солнце бы медленно расширялось и стало холоднее, то же произошло бы и с другими звездами. Сила притяжения Солнца стала бы ослабевать, и постепенно Земля пошла бы по спирали прочь со своей орбиты. Сама Земля при ослаблении собственной гравитации стала бы медленно расширяться и так далее. Тогда в будущем мы могли бы столкнуться с тем, что температура Земли благодаря удалению от Солнца и охлаждению могла бы упасть и заморозить нас. Этот и другие результаты могли бы привести нас к концу еще до того, как наступит тепловая смерть.
Тем не менее до сих пор ученым не удалось обнаружить какого-либо явного признака, что гравитация со временем ослабевает или что в прошедшие времена Земля была более плотной. Вероятно, еще слишком рано говорить об этом и следует подождать других доказательств, прежде чем удостовериться в возможности того или иного пути, но я не могу отделаться от ощущения, что идея ослабевающей гравитационной силы несостоятельна. Если бы это было так, Земля становилась бы все холоднее, к тому же она была бы горячее в прошлом, а признаков этого не обнаруживается. К тому же гравитационные поля были бы все сильнее и сильнее по мере нашего продвижения в прошлое, а во времена космического яйца они были бы настолько сильны, что, по-видимому, космическое яйцо вообще не могло бы взорваться и разбросать свои осколки из-за напряжения невообразимо сильного гравитационного поля (Действительно, мы скоро увидим, что это еще вопрос, мог ли вообще иметь место Большой взрыв, если учесть существующую в настоящее время интенсивность гравитационного поля.).
Сжимающаяся Вселенная
Но погодите, можем ли мы быть уверены, что Вселенная вечно будет расширяться только потому, что она расширяется сейчас?
Предположим, например, что мы смотрим на брошенный мяч, двигающийся вверх от Земли. Он неуклонно движется вверх, но со скоростью, которая неуклонно уменьшается. Мы знаем, что в конце концов его скорость снизится до нуля и что затем он будет двигаться вниз все быстрее и быстрее.
Причина этого в том, что сила гравитации Земли неумолимо тянет мяч вниз, сначала снижая его начальный импульс двигаться вверх, пока он полностью не будет погашен, затем постоянно ускоряя движение мяча вниз. Если бы мяч был брошен вверх сильнее, гравитации понадобилось бы больше времени для противодействия первоначальному импульсу. Мячу удалось бы достигнуть большей высоты, прежде чем прийти в неподвижное состояние и затем начать падать.
Можно подумать, что не имеет значения, насколько сильно мы бросили кверху мяч, в конечном счете он все равно придет в неподвижное состояние и возвратится обратно под неумолимым воздействием гравитации. По сути дела так и гласит народная мудрость: «Что наверх попало, то и вниз упало». Это было бы верно, если бы действие гравитации было постоянным на всем пути наверх. Но это не так.
Воздействие земной гравитации снижается как квадрат расстояния от центра Земли. Объект на поверхности Земли, грубо говоря, находится на расстоянии 6400 километров от ее центра. Объект, находящийся в 6400 километрах над земной поверхностью, будет в два раза дальше от ее поверхности и воздействие на него гравитации составляло бы только 1/4 того, что на поверхности.
Объект может быть брошен вверх с такой большой скоростью, что по мере его движения вверх гравитация снижается настолько быстро, что она никогда не будет достаточно сильной, чтобы понизить его скорость до нуля. В подобных случаях объект не возвращается вниз, а навсегда покидает Землю. Минимальная скорость, при которой это происходит, это «скорость исчезновения» или вторая космическая скорость, для Земли она составляет 11,23 километра в секунду.
Вселенную тоже можно рассматривать как имеющую вторую космическую скорость. Галактические скопления притягивают друг друга гравитационно, но в результате Большого взрыва движутся в разные стороны против силы гравитации. Это значит, что мы можем рассчитывать на то, что сила гравитации замедлит мало-помалу расширение Вселенной и доведет его до полной остановки. Как только это произойдет, галактические скопления под действием своего собственного гравитационного притяжения начнут приближаться друг к другу, и таким образом начнет существование сжимающаяся Вселенная. Тем не менее, раз галактические скопления двигаются друг от друга, сила гравитации каждого скопления на своих соседей должна уменьшаться. Если бы расширение оказалось достаточ но быстрым, взаимное притяжение снизилось бы до такой степени, что ему никогда бы не удалось довести расширение до остановки. Минимальная скорость расширения, необходимая для предотвращения этой остановки, – это скорость исчезновения, вторая космическая скорость для Вселенной.
Если галактические скопления отдаляются друг от друга со скоростью большей, чем установленная для них вторая космическая скорость, то они будут отдаляться и Вселенная будет вечно расширяться, пока не достигнет тепловой смерти. Это будет «разомкнутая Вселенная» типа той, о которой мы рассуждали в предыдущей главе. Если галактические скопления разбегаются со скоростью меньше второй космической, расширение постепенно дойдет до остановки. Тогда со временем начнется сжатие, и Вселенная сформирует космическое яйцо, которое разлетится в новом Большом взрыве. Это будет «замкнутая Вселенная» (иногда называемая «осциллирующей Вселенной», то есть колеблющейся, от англ, oscillate – качаться, колебаться.).
Вопрос тогда состоит лишь в том, расширяется ли Вселенная со скоростью, которая выше второй космической скорости для Вселенной. Мы знаем скорость расширения, и, если бы мы знали величину этой второй космической скорости, мы бы имели ответ.
Эта вторая космическая скорость зависит от гравитационного притяжения космических скоплений друг к Другу а это, в свою очередь, зависит от массы отдельных галактических скоплений и от их расстояний друг от друга. Конечно, галактические скопления имеют разные размеры и находятся на разных расстояниях друг от друга.
Следовательно, мы можем представить себе, что вещество всех галактических скоплений равномерно распределено по Вселенной. Тогда мы можем определить среднюю плотность вещества во Вселенной. Чем больше средняя плотность, тем выше скорость исчезновения для Вселенной и больше вероятность того, что галактические скопления не отдаляются друг от друга так быстро, чтобы исчезнуть, и рано или поздно наступит остановка и переход к сжатию.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127