Таковы обширная равнина Бэрда, Земля Элсуорта, Однако средняя толщина льда Западной Антарктиды меньше средней толщины льда Восточной и составляем 930 м.
Земная кора
В предыдущих разделах мы сделали краткий обзор внешнего и подледного строения Антарктиды – двух ее верхних этажей. Заглянем глубже. Как мы уже рассказывали, континенты располагаются на жестких литосферных плитах. Под ними находится верхняя мантия. Под большим давлением литосферной плиты, несущей континент, верхний слой мантии нагревается и становится пластичным, образуя так называемую астеносферу. В силу пластичности астеносферы литосферная плита может скользить по ней по принципу скольжения конька по льду. Континент, обладая огромной массой, вдавливается в литосферную плиту так, что средняя масса континентального блока, состоящего из части континента АВ и вдавленной плиты ВС, равна средней массе океанического блока ab+bc (рис. 13). Граница, на которой происходит изменение плотностей при переходе от пород, слагающих континент, к породам литосферной плиты или от пород, слагающих дно океана, к тем же породам литосферной плиты, соответствует границе Мохо.
Рис. 13. Схема строения земной коры:
1–земная кора; 2 – литосферная плита; 3 – астеносфера; 4 – океан; 5– граница Мохо; 6 – граница раздвижения плит. С. О. X. – срединный океанический хребет
Толщина верхнего слоя Земли от физической поверхности до литосферной плиты (т. е. А В или ab) обычно понимается как толщина земной коры. Согласно теории изостазии, чем выше поднимается континент или его часть, тем они глубже погружены в подстилающую литосферную плиту и тем толще будет здесь земная кора.
Глубину от физической поверхности до зоны изменения скоростей упругих волн и плотности можно измерить сейсмическим и гравиметрическим методами. Принципиально это делается так же, как и при измерении, толщины льда, однако для таких сейсмических измерений, когда нужно получить отражение от глубоких горизонтов, требуются мощные взрывы. Поэтому данный метод, получивший название глубинного сейсмического зондирования (ГСЗ), является сложным и дорогостоящим. Выполнив ГСЗ хотя бы в одном месте и измерив таким образом силу тяжести, дальше можно воспользоваться относительным гравиметрическим методом. Конечно, это крайний случай. Надо иметь какую-то редкую сеть ГСЗ, и тогда с помощью гравиметрии можно определить толщину коры по всему континенту.
Рис. 14. Карта мощности земной коры под Антарктидой
Сейчас в Антарктиде отработано по крайней мере семь профилей ГСЗ советской, японской и американской экспедициями. На основании этих и гравиметрических измерений можно построить схему толщины земной коры Антарктиды. Здесь мы приводим более ранний вариант схемы, в основу которой легли три советских разреза ГСЗ (рис. 14). Оказалось, что мощность коры Восточной Антарктиды составляет 40–50 км, что характерно для континентов вообще. Кора Западной Антарктиды несколько тоньше – 25–35 км, что может соответствовать переходной коре от континента к океану, мощность коры которого от 6 до 15 км. Таким образом, вопрос относительно того, является ли Антарктида континентом или архипелагом, решен, в частности, и этим методом.
Немного о геологии
Антарктида – древняя платформа, частично обрамленная на Тихоокеанском побережье складчатыми горными сооружениями. По своему строению она имеет много общего с древними платформами Австралии, Южной Америки, Африки и Индии. Эта платформа не является однородной и одновозрастной во всех своих частях. Предполагают, что у значительной части Восточной Антарктиды три возрастных яруса. Нижний структурный ярус представляет собой кристаллический фундамент. Он образовался в результате метаморфизма, процессов перекристаллизации и частичного плавления огромных толщ обломочных и иных осадков. Под влиянием тектонических движений и под воздействием нагретых растворов горизонтально лежащие слои осадков и лав сминались в складки и превращались в кристаллические сланцы, кварциты, мраморы. Они гранитизировались, образовав такие породы, как гнейсы и гранито-гнейсы. Возникновение метаморфических пород сопровождалось появлением жил гранитов, пегматитов и кварца.
В кристаллическом фундаменте появлялись расколы, по которым из недр поднималась магма, создавая интрузии.
Средний структурный ярус развит в пределах платформы не так широко, как кристаллический фундамент. Он представляется мощной толщей (9–10 км) слабо метаморфизованных нижнепалеозойскйх осадочных и вулканических пород – зеленых сланцев, песчаников, конгломератов, глинистых и аспидных сланцев, смятых в пологие линейные складки. Эти осадки накапливались сотни миллионов лет в прогибах кристаллического фундамента, главным образом на окраинах платформы.
Особенно широко распространен в Антарктиде верхний структурный ярус, сложенный преимущественно слабо измененными осадочными породами среднего и верхнего палеозоя. Отложения этого яруса широко распространены на Земле Виктории, в горах Королевы Мод и в других местах. Эти отложения получили название серии Бикон. В подошве серии обнаружены остатки палеозойских панцирных рыб, что позволило оценить возраст этого слоя в 350 млн. лет. Несколько выше по разрезу встречаются ледниковые отложения, свидетельствующие об оледенении, происходившем приблизительно 300 млн. лет назад. Ледниковые отложения имеются также в пластах средне-палеозойского периода (около 150 млн. лет). В верхней части этой серии встречаются пласты каменных углей. В угольных пластах попадаются окаменелости древовидных папоротников, остатки древних хвойных деревьев, позволяющие провести четкую датировку.
Осадки серии Бикон везде лежат почти горизонтально. Это типично континентальные отложения, образовавшиеся в процессе разрушения горных сооружений нижнего и среднего ярусов платформы.
Самая примечательная особенность геологического строения Антарктической платформы – ее сходство с другими платформами южного полушария. На всех, них лежит одинаковый чехол континентальных отложений, содержащий остатки древних рептилий. Очень схоже и строение их кристаллического фундамента.
Перед оледенением (12–15 млн. лет назад) в пределах Антарктического п-ова росли хвойные и буковые леса, подобные лесам современной Патагонии. Оледенение наступило во второй половине кайнозойской эры (около 10 млн. лет назад).
Ископаемые Антарктиды
Родство Антарктиды с Южной Америкой, Южной Африкой, Индией и Австралией по геологическому строению дает право предполагать на ней наличие схожего комплекса полезных ископаемых. Конечно, здесь их трудно обнаружить и еще труднее добыть. Тем не менее в результате планомерных геологических изысканий сейчас уже обнаружены многие из них.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Земная кора
В предыдущих разделах мы сделали краткий обзор внешнего и подледного строения Антарктиды – двух ее верхних этажей. Заглянем глубже. Как мы уже рассказывали, континенты располагаются на жестких литосферных плитах. Под ними находится верхняя мантия. Под большим давлением литосферной плиты, несущей континент, верхний слой мантии нагревается и становится пластичным, образуя так называемую астеносферу. В силу пластичности астеносферы литосферная плита может скользить по ней по принципу скольжения конька по льду. Континент, обладая огромной массой, вдавливается в литосферную плиту так, что средняя масса континентального блока, состоящего из части континента АВ и вдавленной плиты ВС, равна средней массе океанического блока ab+bc (рис. 13). Граница, на которой происходит изменение плотностей при переходе от пород, слагающих континент, к породам литосферной плиты или от пород, слагающих дно океана, к тем же породам литосферной плиты, соответствует границе Мохо.
Рис. 13. Схема строения земной коры:
1–земная кора; 2 – литосферная плита; 3 – астеносфера; 4 – океан; 5– граница Мохо; 6 – граница раздвижения плит. С. О. X. – срединный океанический хребет
Толщина верхнего слоя Земли от физической поверхности до литосферной плиты (т. е. А В или ab) обычно понимается как толщина земной коры. Согласно теории изостазии, чем выше поднимается континент или его часть, тем они глубже погружены в подстилающую литосферную плиту и тем толще будет здесь земная кора.
Глубину от физической поверхности до зоны изменения скоростей упругих волн и плотности можно измерить сейсмическим и гравиметрическим методами. Принципиально это делается так же, как и при измерении, толщины льда, однако для таких сейсмических измерений, когда нужно получить отражение от глубоких горизонтов, требуются мощные взрывы. Поэтому данный метод, получивший название глубинного сейсмического зондирования (ГСЗ), является сложным и дорогостоящим. Выполнив ГСЗ хотя бы в одном месте и измерив таким образом силу тяжести, дальше можно воспользоваться относительным гравиметрическим методом. Конечно, это крайний случай. Надо иметь какую-то редкую сеть ГСЗ, и тогда с помощью гравиметрии можно определить толщину коры по всему континенту.
Рис. 14. Карта мощности земной коры под Антарктидой
Сейчас в Антарктиде отработано по крайней мере семь профилей ГСЗ советской, японской и американской экспедициями. На основании этих и гравиметрических измерений можно построить схему толщины земной коры Антарктиды. Здесь мы приводим более ранний вариант схемы, в основу которой легли три советских разреза ГСЗ (рис. 14). Оказалось, что мощность коры Восточной Антарктиды составляет 40–50 км, что характерно для континентов вообще. Кора Западной Антарктиды несколько тоньше – 25–35 км, что может соответствовать переходной коре от континента к океану, мощность коры которого от 6 до 15 км. Таким образом, вопрос относительно того, является ли Антарктида континентом или архипелагом, решен, в частности, и этим методом.
Немного о геологии
Антарктида – древняя платформа, частично обрамленная на Тихоокеанском побережье складчатыми горными сооружениями. По своему строению она имеет много общего с древними платформами Австралии, Южной Америки, Африки и Индии. Эта платформа не является однородной и одновозрастной во всех своих частях. Предполагают, что у значительной части Восточной Антарктиды три возрастных яруса. Нижний структурный ярус представляет собой кристаллический фундамент. Он образовался в результате метаморфизма, процессов перекристаллизации и частичного плавления огромных толщ обломочных и иных осадков. Под влиянием тектонических движений и под воздействием нагретых растворов горизонтально лежащие слои осадков и лав сминались в складки и превращались в кристаллические сланцы, кварциты, мраморы. Они гранитизировались, образовав такие породы, как гнейсы и гранито-гнейсы. Возникновение метаморфических пород сопровождалось появлением жил гранитов, пегматитов и кварца.
В кристаллическом фундаменте появлялись расколы, по которым из недр поднималась магма, создавая интрузии.
Средний структурный ярус развит в пределах платформы не так широко, как кристаллический фундамент. Он представляется мощной толщей (9–10 км) слабо метаморфизованных нижнепалеозойскйх осадочных и вулканических пород – зеленых сланцев, песчаников, конгломератов, глинистых и аспидных сланцев, смятых в пологие линейные складки. Эти осадки накапливались сотни миллионов лет в прогибах кристаллического фундамента, главным образом на окраинах платформы.
Особенно широко распространен в Антарктиде верхний структурный ярус, сложенный преимущественно слабо измененными осадочными породами среднего и верхнего палеозоя. Отложения этого яруса широко распространены на Земле Виктории, в горах Королевы Мод и в других местах. Эти отложения получили название серии Бикон. В подошве серии обнаружены остатки палеозойских панцирных рыб, что позволило оценить возраст этого слоя в 350 млн. лет. Несколько выше по разрезу встречаются ледниковые отложения, свидетельствующие об оледенении, происходившем приблизительно 300 млн. лет назад. Ледниковые отложения имеются также в пластах средне-палеозойского периода (около 150 млн. лет). В верхней части этой серии встречаются пласты каменных углей. В угольных пластах попадаются окаменелости древовидных папоротников, остатки древних хвойных деревьев, позволяющие провести четкую датировку.
Осадки серии Бикон везде лежат почти горизонтально. Это типично континентальные отложения, образовавшиеся в процессе разрушения горных сооружений нижнего и среднего ярусов платформы.
Самая примечательная особенность геологического строения Антарктической платформы – ее сходство с другими платформами южного полушария. На всех, них лежит одинаковый чехол континентальных отложений, содержащий остатки древних рептилий. Очень схоже и строение их кристаллического фундамента.
Перед оледенением (12–15 млн. лет назад) в пределах Антарктического п-ова росли хвойные и буковые леса, подобные лесам современной Патагонии. Оледенение наступило во второй половине кайнозойской эры (около 10 млн. лет назад).
Ископаемые Антарктиды
Родство Антарктиды с Южной Америкой, Южной Африкой, Индией и Австралией по геологическому строению дает право предполагать на ней наличие схожего комплекса полезных ископаемых. Конечно, здесь их трудно обнаружить и еще труднее добыть. Тем не менее в результате планомерных геологических изысканий сейчас уже обнаружены многие из них.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47