ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Кроме непрерывного движения во времени, им нужно непрерывное уклонение в пространство, лежащее вне трехмерной сферы. Завязь отделена от яблока временем. С этой точки зрения, яблоко – это три-четыре месяца движения молекул в четвертом измерении. Представим себе весь путь от завязи до яблока, мы увидим направление четвертого измерения, т.е. таинственный четвертый перпендикуляр – линию, перпендикулярную ко всем трем перпендикулярам нашего пространства.
* * *
Хинтон так близко стоит к правильному решению вопроса о четвертом измерении, что иногда угадывает место «четвертого измерения» в жизни, даже когда не в состоянии точно определить это место. Так, он говорит, что симметрию строения живых организмов можно объяснить движением их частиц в четвертом измерении.
Всем известен, говорит Хинтон, способ получения на бумаге изображений, похожих на насекомых. На бумагу капают чернила и складывают ее пополам. Получается очень сложная симметричная фигура, похожая на фантастическое насекомое. Если бы ряд таких изображений увидел человек, совершенно не знакомый со способом их приготовления, то он, рассуждая логически, должен был бы прийти к заключению, что они получены путем складывания бумаги, т.е. что их симметрично расположенные точки соприкасались. Точно также и мы, рассматривая и изучая формы строения живых существ, напоминающие фигуры на бумаге, полученные описанным способом, можем заключить, что симметричные формы насекомых, листьев, птиц и т.п. создаются процессом, аналогичным складыванию. Симметричное строение живых тел можно объяснить если не складыванием пополам в четвертом измерении, то, во всяком случае, таким же, как при складывании, расположением мельчайших частиц, из которых строятся эти тела. В природе существует очень любопытный феномен, создающий совершенно правильные чертежи четвертого измерения – нужно только уметь их читать. Они видны в фантастически разнообразных, но всегда симметричных фигурах снежинок, в рисунках цветов, звезд, папоротников и кружев морозных узоров на стекле. Капельки воды, осаждаясь на холодное стекло или лед, немедленно начинают замерзать и расширяться, оставляя следы своего движения в четвертом измерении в виде причудливых рисунков. Морозные узоры и снежинки – это фигуры четвертого измерения, таинственные a4. Воображаемое в геометрии движение низшей фигуры для получения высшей осуществляется здесь на деле, и полученная фигура действительно является следом движения благодаря тому, что мороз сохраняет все моменты расширения замерзающих капелек воды.
Формы живых тел, цветы, папоротники созданы по тому же принципу, хотя и более сложно. Общий вид дерева, постепенно расширяющегося в ветвях и побегах, есть как бы диаграмма четвертого измерения, a4. Голые деревья зимой и ранней весной нередко представляют собой очень сложные и чрезвычайно интересные диаграммы четвертого измерения. Мы проходим мимо них, ничего не замечая, так как думаем, что дерево существует в трехмерном пространстве. Такие же замечательные диаграммы можно увидеть в узорах водорослей, цветов, молодых побегов, некоторых семян и т.д. и т.п. Иногда достаточно немного увеличить их, чтобы обнаружить тайны Великой Лаборатории, скрытой от наших глаз.
В книге проф. Блоссфельдта* о художественных формах в природе читатель может найти несколько превосходных иллюстраций к приведенным выше положениям.
* Karl Blossfeldt, Art Forms in Nature. London, 1929.
Живые организмы, тела животных и людей построены по принципу симметричного движения. Чтобы понять эти принципы, возьмем простой схематический пример симметричного движения: представим себе куб, состоящий из двадцати семи кубиков, и будем мысленно воображать, что этот куб расширяется и сокращается. При расширении все двадцать шесть кубиков, расположенные вокруг центрального, будут удаляться от него, а при сокращении опять к нему приближаться. Для удобства рассуждения и для большего сходства нашего куба с телом, состоящим из молекул, предположим, что кубики измерения не имеют, что это просто точки. Иначе говоря, возьмем только центры двадцати семи кубиков и мысленно соединим их линиями как с центром, так и между собой.
Рассматривая расширение куба, состоящего из двадцати семи кубиков, мы можем сказать, что каждый из этих кубиков, чтобы не столкнуться с другими и не помешать их движению, должен двигаться, удаляясь от центра, т.е. по линии, соединяющей его центр с центром центрального кубика. Это – первое правило:
При расширении и сокращении молекулы движутся по линиям, соединяющим из с центром.
Далее мы видим в нашем кубе, что не все линии, соединяющие двадцать шесть точек с центром, равны. Линии, которые идут к центру от точек, лежащих на углах куба, т.е. от центра угловых кубиков, длиннее линий, которые соединяют с центром точки, лежащие в центрах шести квадратов на поверхностях куба. Если мы предположим, что межмолекулярное пространство удваивается, то одновременно увеличиваются вдвое все линии, соединяющие двадцать шесть точек с центром. Линии эти не равны, следовательно молекулы движутся не с одинаковой скоростью, – одни медленнее, другие быстрее, при этом находящиеся дальше от центра движутся быстрее, находящиеся ближе – медленнее. Отсюда можно вывести второе правило:
Скорость движения молекул при расширении и сокращении тела пропорциональна длине линий, соединяющих эти молекулы с центром.
Наблюдая расширение куба, мы видим, что расстояние между всеми двадцатью семью кубиками увеличилось пропорционально прежнему.
Назовем а – отрезки, соединяющие 26 точек с центром, и б – отрезки, соединяющие 26 точек между собой. Построив внутри расширяющегося и сокращающегося куба несколько треугольников, мы увидим, что отрезки б удлиняются пропорционально удлинению отрезков а. Из этого можно вывести третье правило:
Расстояние между молекулами при расширении увеличивается пропорционально их удалению от центра.
Иными словами, если точки находятся на равном расстоянии от центра, они и останутся на равном расстоянии от него; а две точки, находившиеся на равном расстоянии от третьей, останутся от ней на равном расстоянии. При этом, если смотреть на движение не со стороны центра, а со стороны какой-нибудь из точек, будет казаться, что эта точка и есть центр, от которого идет расширение, – будет казаться, что все другие точки отдаляются от нее или приближаются к ней, сохраняя прежнее отношение к ней и между собой, а она сама остается неподвижной. «Центр везде»!
Последнее правило лежит в основе законов симметрии в строении живых организмов. Но живые организмы строятся не одним расширением.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176