Так как число людей на футбольном поле равно 23, то число пар равно 253. Например, первого из находящихся на футбольном поле можно включать в одну пару с любым из 22 других, что дает для начала 22 пары. Второму можно подобрать в пару любого из 21 остальных людей на поле (поскольку мы уже сосчитали второго один раз, когда подсчитывали число пар с участием первого, число пар со вторым следует уменьшить на единицу), и мы получаем еще 20 пар. Продолжая рассуждать так же, мы в итоге получим 253 пары.
То, что вероятность совпадения дней рождения в группе из 23 людей оказывается больше 50 %, противоречит интуиции. Тем не менее с точки зрения математики ответ правильный. Именно на такие «странные», противоречащие интуитивным, представления опираются букмекеры и игроки, используя опрометчивость азартных людей. В следующий раз, когда вам случится быть на заседании или званом обеде, на котором окажется 23 участника, можете заключить пари, что среди присутствующих найдутся два человека, дни рождения которых совпадают. Следует иметь в виду, что в группе из 23 человек вероятность совпадения двух дней рождения лишь слегка превышает 50 %, но с увеличением численности группы вероятность совпадения быстро увеличивается.
Ферма и Паскаль заложили основы тех правил, которым подчиняются все азартные игры и которые могут быть использованы игроками, чтобы выработать идеальную стратегию игры и стратегию заключения пари. Кроме того, обнаруженные Ферма и Паскалем законы теории вероятностей нашли приложения в целом ряде областей человеческой деятельности — от спекулятивной игры на фондовой бирже до оценивания вероятности ядерной катастрофы.
Паскаль был даже убежден, что мог бы применить свои теории для обоснования веры в Бога. Он утверждал, что «азарт, который испытывает игрок при заключении пари равен произведению той суммы, которую он может выиграть, и вероятности выигрыша». Далее Паскаль утверждал, что возможный выигрыш вечного блаженства обладает бесконечно большой ценностью, а вероятность попасть в царство небесное, если вести добродетельную жизнь, заведомо конечна. Следовательно, по определению Паскаля, религия — игра бесконечно азартная и стоящая того, чтобы в нее играли, так как произведение бесконечно большого потенциального выигрыша на конечную вероятность бесконечно велико.
Разделяя с Паскалем честь быть отцом-основателем теории вероятностей, Ферма по праву может также считаться одним из основателей еще одной области математики — дифференциального исчисления. Дифференциальное исчисление позволяет вычислять скорость изменения, или производную, одной величины относительно другой (например, скорость изменения расстояния относительно времени, известную просто как скорость). Для математиков величины, как правило, абстрактны и неосязаемы, но труды Ферма имели своим следствием подлинный переворот в физике. Математика Ферма позволила физикам лучше понять, что такое скорость, и какова ее связь с другими фундаментальными величинами, такими, как ускорение — скорость изменения скорости относительно времени.
Дифференциальное исчисление оказывает сильное влияние на экономику. Инфляция — это скорость изменения цены, известная как производная цены. Кроме того, экономистов часто интересует скорость изменения инфляции, известная как вторая производная цены. Эти термины часто используются политиками, и математик Хуго Росси однажды заметил: «Осенью 1972 года президент Никсон заявил, что скорость роста инфляции пошла на убыль. Это был первый случай, когда правящий президент использовал третью производную, чтобы увеличить свой шанс на переизбрание».
На протяжении более двух столетий принято было считать, что Исаак Ньютон открыл дифференциальное исчисление независимо от Ферма, не зная о его работах. Но в 1934 году Луис Треншар Мур обнаружил заметку, которая позволила внести в вопрос о приоритете полную ясность и воздать Ферма по заслугам. Ньютон писал, что, разрабатывая дифференциальное исчисление, он опирался на «метод построения касательных месье Ферма». С XVIII века дифференциальное исчисление использовалось для описания закона всемирного тяготения Ньютона и его законов механики, зависящих от расстояния, скорости и ускорения.
Одного лишь участия в создании дифференциального исчисления и теории вероятностей было бы более чем достаточно, чтобы обеспечить Ферма место в зале славы математики, но его величайшее достижение лежит в другой области математики.
Дифференциальное исчисление используется при посылке космических кораблей на Луну, теория вероятностей — при оценке рисков страховых компаний, но Ферма питал глубочайшую любовь к разделу, который не обещал никаких приложений — теории чисел. Ферма был обуян страстью — ему хотелось во что бы то ни стало понять свойства чисел и отношения между ними. Теория чисел — наиболее чистая древнейшая область математики, и Ферма продолжал развивать этот раздел математики, доставшийся ему в наследство от Пифагора.
Эволюция теории чисел
После смерти Пифагора представление о математическом доказательстве быстро распространилось по всему цивилизованному миру. Два столетия спустя после того, как его Академия сгорела до основания, центр математических исследований переместился из Кротона в город Александрию. В 332 году до н. э., покорив Грецию, Малую Азию и Египет, Александр Македонский решил построить столицу, которая должна была стать самым величественным городом мира. Александрия действительно стала прекраснейшим городом и к тому же, хотя и не сразу, научным центром. Только после смерти Александра Македонского, когда на египетский трон взошел его единоутробный брат Птолемей I, Александрия стала тем местом, где возникло первое в мире высшее учебное заведение — Академия. Математики и другие интеллектуалы, привлеченные репутацией Академии, и, еще в большей степени, Александрийской библиотеки, стали перебираться в культурную столицу Птолемея I.
Замысел создания Библиотеки принадлежал Деметрию Фаларею, непопулярному оратору, который был вынужден бежать из Афин.
После долгих странствий он нашел прибежище в Александрии. Фаларею удалось внушить Птолемею I мысль о том, что следует собрать все великие сочинения, а вслед за книгами в Александрию потянутся и великие умы. Когда в хранилищах Александрийской библиотеки оказались собраны сочинения из Египта и Греции, специальные агенты разъехались в поисках сокровищ знания по Европе и Малой Азии. Ненасытный аппетит собирателей Библиотеки ощущали на себе все, кто посещал в ту пору Александрию: при въезде в город у приезжих отбирали всю литературу и передавали писцам. Со всех сочинений те снимали копии, после чего подлинники отправлялись в Библиотеку, а копии с благодарностью возвращались прежним владельцам книг.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
То, что вероятность совпадения дней рождения в группе из 23 людей оказывается больше 50 %, противоречит интуиции. Тем не менее с точки зрения математики ответ правильный. Именно на такие «странные», противоречащие интуитивным, представления опираются букмекеры и игроки, используя опрометчивость азартных людей. В следующий раз, когда вам случится быть на заседании или званом обеде, на котором окажется 23 участника, можете заключить пари, что среди присутствующих найдутся два человека, дни рождения которых совпадают. Следует иметь в виду, что в группе из 23 человек вероятность совпадения двух дней рождения лишь слегка превышает 50 %, но с увеличением численности группы вероятность совпадения быстро увеличивается.
Ферма и Паскаль заложили основы тех правил, которым подчиняются все азартные игры и которые могут быть использованы игроками, чтобы выработать идеальную стратегию игры и стратегию заключения пари. Кроме того, обнаруженные Ферма и Паскалем законы теории вероятностей нашли приложения в целом ряде областей человеческой деятельности — от спекулятивной игры на фондовой бирже до оценивания вероятности ядерной катастрофы.
Паскаль был даже убежден, что мог бы применить свои теории для обоснования веры в Бога. Он утверждал, что «азарт, который испытывает игрок при заключении пари равен произведению той суммы, которую он может выиграть, и вероятности выигрыша». Далее Паскаль утверждал, что возможный выигрыш вечного блаженства обладает бесконечно большой ценностью, а вероятность попасть в царство небесное, если вести добродетельную жизнь, заведомо конечна. Следовательно, по определению Паскаля, религия — игра бесконечно азартная и стоящая того, чтобы в нее играли, так как произведение бесконечно большого потенциального выигрыша на конечную вероятность бесконечно велико.
Разделяя с Паскалем честь быть отцом-основателем теории вероятностей, Ферма по праву может также считаться одним из основателей еще одной области математики — дифференциального исчисления. Дифференциальное исчисление позволяет вычислять скорость изменения, или производную, одной величины относительно другой (например, скорость изменения расстояния относительно времени, известную просто как скорость). Для математиков величины, как правило, абстрактны и неосязаемы, но труды Ферма имели своим следствием подлинный переворот в физике. Математика Ферма позволила физикам лучше понять, что такое скорость, и какова ее связь с другими фундаментальными величинами, такими, как ускорение — скорость изменения скорости относительно времени.
Дифференциальное исчисление оказывает сильное влияние на экономику. Инфляция — это скорость изменения цены, известная как производная цены. Кроме того, экономистов часто интересует скорость изменения инфляции, известная как вторая производная цены. Эти термины часто используются политиками, и математик Хуго Росси однажды заметил: «Осенью 1972 года президент Никсон заявил, что скорость роста инфляции пошла на убыль. Это был первый случай, когда правящий президент использовал третью производную, чтобы увеличить свой шанс на переизбрание».
На протяжении более двух столетий принято было считать, что Исаак Ньютон открыл дифференциальное исчисление независимо от Ферма, не зная о его работах. Но в 1934 году Луис Треншар Мур обнаружил заметку, которая позволила внести в вопрос о приоритете полную ясность и воздать Ферма по заслугам. Ньютон писал, что, разрабатывая дифференциальное исчисление, он опирался на «метод построения касательных месье Ферма». С XVIII века дифференциальное исчисление использовалось для описания закона всемирного тяготения Ньютона и его законов механики, зависящих от расстояния, скорости и ускорения.
Одного лишь участия в создании дифференциального исчисления и теории вероятностей было бы более чем достаточно, чтобы обеспечить Ферма место в зале славы математики, но его величайшее достижение лежит в другой области математики.
Дифференциальное исчисление используется при посылке космических кораблей на Луну, теория вероятностей — при оценке рисков страховых компаний, но Ферма питал глубочайшую любовь к разделу, который не обещал никаких приложений — теории чисел. Ферма был обуян страстью — ему хотелось во что бы то ни стало понять свойства чисел и отношения между ними. Теория чисел — наиболее чистая древнейшая область математики, и Ферма продолжал развивать этот раздел математики, доставшийся ему в наследство от Пифагора.
Эволюция теории чисел
После смерти Пифагора представление о математическом доказательстве быстро распространилось по всему цивилизованному миру. Два столетия спустя после того, как его Академия сгорела до основания, центр математических исследований переместился из Кротона в город Александрию. В 332 году до н. э., покорив Грецию, Малую Азию и Египет, Александр Македонский решил построить столицу, которая должна была стать самым величественным городом мира. Александрия действительно стала прекраснейшим городом и к тому же, хотя и не сразу, научным центром. Только после смерти Александра Македонского, когда на египетский трон взошел его единоутробный брат Птолемей I, Александрия стала тем местом, где возникло первое в мире высшее учебное заведение — Академия. Математики и другие интеллектуалы, привлеченные репутацией Академии, и, еще в большей степени, Александрийской библиотеки, стали перебираться в культурную столицу Птолемея I.
Замысел создания Библиотеки принадлежал Деметрию Фаларею, непопулярному оратору, который был вынужден бежать из Афин.
После долгих странствий он нашел прибежище в Александрии. Фаларею удалось внушить Птолемею I мысль о том, что следует собрать все великие сочинения, а вслед за книгами в Александрию потянутся и великие умы. Когда в хранилищах Александрийской библиотеки оказались собраны сочинения из Египта и Греции, специальные агенты разъехались в поисках сокровищ знания по Европе и Малой Азии. Ненасытный аппетит собирателей Библиотеки ощущали на себе все, кто посещал в ту пору Александрию: при въезде в город у приезжих отбирали всю литературу и передавали писцам. Со всех сочинений те снимали копии, после чего подлинники отправлялись в Библиотеку, а копии с благодарностью возвращались прежним владельцам книг.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88