ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Лучи
ультрафиолетовой части спектра необходимы и для нор-
мальной жизнедеятельности человека. Под их воздей-
ствием в организме образуется витамин D.
Наибольшее значение для организмов имеет види-
мый свет с длиной волны от 0,4 до 0,75 мкм. Энергия
видимого света используется для процессов фотосинте-
за в клетках растений. При этом листьями особенно
сильно поглощаются оранжево-красные (0,66-0,68 мкм)
и сине-фиолетовые (0,4-0,5 мкм) лучи. На биосинтез
расходуется от 0,1 до 1 % приходящей солнечной энер-
гии, иногда коэффициент полезного действия фотосин-
тезирующей растительности достигает нескольких про-
центов.
Разнообразие световых условий, при которых живут
растения, очень велико. В разных местообитаниях нео-
динаковы интенсивность солнечной радиации, ее спект-
ральный состав, продолжительность освещения и т. д.
У растений интенсивность фотосинтеза возрастает с уве-
личением освещенности до известного предела, назы-
ваемого уровнем светового насыщения или экологиче-
ского оптимума. Дальнейшее усиление светового потока
не сопровождается увеличением фотосинтеза, а затем
приводит к его угнетению.
По отношению к свету различают три группы расте-
ний: светолюбивые, тенелюбивые и теневыносливые.
Светолюбивые обитают на открытых местах в условиях
полного солнечного освещения (степные и луговые тра-
вы, культурные растения открытого грунта и многие
другие). Но и у светолюбивых растений увеличение ос-
вещенности сверх оптимальной подавляет фотосинтез.
Тенелюбивые растения имеют экологический оптимум
в области слабой освещенности и не выносят сильного
света. Это виды, обитающие в нижних, затененных яру-
-186-
сах растительных сообществ - ельников, дубрав и т. п.
Теневыносливые растения хорошо растут при полной
освещенности, но адаптируются и к слабому свету.
В регуляции активности живых организмов и их раз-
витии большое значение имеет продолжительность осве-
щения (фотопериод). Смену дня и ночи, а также изме-
нение продолжительности светового периода суток орга-
низмы используют как сигналы для распределения
своих функций во времени и для программирования
своих жизненных циклов таким образом, чтобы исполь-
зовать самые благоприятные условия. Например, на-
ступление активности в разное время суток у ночных
и дневных хищников ослабляет конкуренцию за добычу.
В умеренных зонах выше и ниже экватора цикл разви-
тия животных и растений приурочен к определенным
сезонам года. Подготовка к зиме осуществляется не на
основе изменения температурных условий, которые весь-
ма изменчивы, а вследствие сокращения длины дня,
которая в отличие от других сезонных характеристик
всегда одинакова в определенное время года в данном
месте. Изменения фотопериода служат пусковым сигна-
лом, включающим физиологические процессы. Весной,
с удлинением светового периода, начинается рост и цве-
тение у растений, размножение у птиц и млекопитаю-
щих. Укорочение светового периода осенью служит сиг-
налом растениям для сбрасывания листьев, живот-
ным - для накопления жира и миграции, подготовки
к зимней спячке. Изменения длины дня воспринимаются
органами зрения у животных и специальными пигмен-
тами у растений. Возбуждение рецепторов вызывает
ряд последовательных биохимических реакций, актива-
цию ферментов или выделение гормонов и, наконец,
физиологическую или поведенческую реакцию. Реак-
ция организмов на сезонные изменения длины дня носит
название фотопериодизма.
Способность организмов воспринимать время, нали-
чие у них <биологических часов>- важное физиологи-
ческое приспособление, повышающее шансы на выжи-
вание в данных условиях среды. Там, где нет выражен-
ных сезонных изменений климата, большинство видов
не обладает фотопериодизмом. Например, у многих тро-
пических деревьев цветение и плодоношение растянуто
во времени, и на дереве одновременно встречаются и
цветки, и плоды. В умеренном климате виды, успеваю-
щие быстро завершить свой жизненный цикл и не встре-
-187-
чающиеся в активном состоянии в неблагоприятные
сезоны года (эфемеры), также не проявляют фотоперио-
дических реакций. Фотопериодизм может быть не только
прямым, но и опосредованным. Так, у капустной корне-
вой мухи зимняя диапауза (состояние покоя) разви-
вается вследствие изменений качества пищи, возникаю-
щих в связи с подготовкой растения к холодам.
Инфракрасное излучение составляет примерно 45 %
от общего количества солнечной энергии, притекающей
к Земле. Инфракрасные лучи поглощаются тканями ра-
стений и животных, объектами неживой природы, в том
числе водой. Любая поверхность, имеющая темпера-
туру выше нуля, испускает длинноволновые инфракрас-
ные (тепловые) лучи. Поэтому растения и животные
получают тепловую энергию не только от Солнца, но и
от предметов окружающей среды.
Температура. От температуры окружающей среды
зависит температура тела большинства организмов и,
следовательно, скорость всех химических реакций, со-
ставляющих обмен веществ. Нормальное строение и
функционирование белков, от которых зависит само су-
ществование жизни, возможно в пределах от 0 до 50 ЇС.
Между тем температурные границы, в пределах которых
обнаруживается жизнь, гораздо шире. В ледяных пу-
стынях Антарктики температура может опускаться до
-88 ЇС, а в безводных пустынях достигать 58 ЇС в тени.
Некоторые виды бактерий и водорослей обитают в горя-
чих источниках при температурах 80-88 градусов С. Таким
образом, диапазон колебаний температур на разных
территориях Земли, где встречается жизнь, достигает
176 ЇС. Даже в одном местообитании разница между
минимальной температурой зимой и максимальной ле-
том может составлять более 80 градусов С. В некоторых мест-
ностях велики и суточные колебания температуры: так,
в пустыне Сахара на протяжении суток температура
может изменяться на 50 градусов С.
Но ни одно живое существо в мире не способно в ак-
тивном состоянии переносить весь диапазон температур.
Поэтому распространение любого вида животных и ра-
стений ограничено тем местообитанием, к температуре
которого он приспособлен.
По отношению к температуре окружающей среды
живые организмы делят на две группы: пойкилотерм-
ные, температура тела которых зависит от окружаю-
щей среды и получающие теплоту главным образом от
-188-
внешних источников, и гомойотермные, поддерживаю-
щие постоянную температуру тела независимо от ее ко-
лебаний во внешней среде.
На рис. 67 схематически изображены пути теплооб-
мена между пойкилотермным организмом и окружаю-
щими его физическими телами.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19