ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


— Это лучше меня сделает сам Королев, — ответил я.
— Мабуть помьян?м, як мы билимбаиху на Урали хлыбалы? — допытывался Люлька.
Он явно хотел понять, зачем я явился с самого утра, раньше, чем я сам начну выкладывать причину.
Когда я объяснил, что меня привело в кабинет уважаемого главного конструктора авиационных турбореактивных двигателей, он был немного разочарован. Создание турбины такой малой мощности — это не проблема, но возни с ней будет много. Я для увлечения наговорил о надежности, точности регулирования частоты вращения, малой массе — но он все это сам отлично представлял.
— Турбыну зробыты мы можемо. Тильки нехай ваши хлопци сами прыдумають, чим ее крутыты и це вже ты сам з нымы миркуй, скильки та якого газу треба браты. Ось де вес буде, а не в моим колесыку.
Люлька согласился. И в дальнейшем, с 1962 года, разработка АТГ — автономных турбогенераторов для Н1 проводилась ВНИИЭМом совместно с «Сатурном» в самом тесном сотрудничестве. Королев поручил двигателистам ОКБ-1 разработку пневмогидравлических систем питания агрегатов, шар-баллонов, теплообменников, фильтров и пневмоарматуры. У нас в ОКБ-1 эти заботы принял на себя отдел Петра Шульгина.
Техническое задание на всю систему было торжественно утверждено Королевым, Пилюгиным, Иосифьяном и Люлька.
В процессе разработки идея простого турбогенератора обросла регуляторами давления, блоками клапанов, дросселями, двумя каналами регуляторов частоты, теплообменниками гелия, электропневматическим преобразователем электрического сигнала в регулирующее давление, по сравнению с которыми бесконтактный синхронный генератор переменного тока и генератор постоянного тока оказались самыми простыми и надежными устройствами. Регуляторы частоты, напряжения и пневмогидравлические устройства, которыми они были окружены, вызывали куда больше хлопот при отработке, чем основа основ — турбина и две электрические машины.
В истринском филиале ВНИИЭМа был сооружен комплексный стенд для отработки всех агрегатов совместно со штатной системой питания «рабочим телом». На каждой ракете Н1 устанавливалось по два турбогенераторных источника: один — на блоке «А», питающий всех потребителей первой ступени, и второй — на блоке «В», питающий вторую и третью ступени.
Одновременно с созданием бортовых турбогенераторов ВНИИЭМ разработал их наземный эквивалент, включающий в себя блок сетевого преобразователя частоты, трансформаторы и выпрямительные устройства. Наземный эквивалент в процессе испытаний позволял без расхода бортовых запасов сжатого воздуха или гелия подавать на борт переменный ток напряжением 60 и 40 вольт частотой 1000 герц и постоянное напряжение 28 вольт.
Коллективы ВНИИЭМа совместно с «Сатурном» только для отработочных испытаний изготовили 22 турбопривода «воздушного» варианта, на которых наработали почти 3000 часов, и 17 турбоприводов «гелиевого варианта», на которых наработали 1000 часов, при полетном времени всего 12 минут! Запас надежности оказался огромным. На отдельных турбоприводах было наработано свыше 8500 полетных циклов.
По моей просьбе один из ведущих разработчиков системы во ВНИИЭМе Владимир Авербух составил справку, в которой перечислил только основных участников создания системы — инженеров— разработчиков и испытателей. Таких только во ВНИИЭМе насчитывалось более 90 человек. Это не считая производственников и рабочих— станочников — непосредственных изготовителей агрегатов «в металле». На «Сатурне» у Люлька специалистов-инженеров — непосредственных создателей системы воздушно-гелиевого турбопривода оказалось, не считая производственников, 15 человек. Если к этому перечню добавить тех, кто трудился в НИИАПе над встраиванием новой идеи в систему электропитания, в ЦКБЭМ над конструкцией, пневмо-гидросхемой ракеты, телеметрией и испытательной документацией, да еще приплюсовать аппарат военной приемки во всех организациях и специалистов полигона, прикрепленных только к этой работе, то окажется, что для реализации, казалось бы, простой идеи потребовался самоотверженный творческий труд более 200 специалистов. Это, повторяю, не считая «рабочего класса», который в итоге выдавал «на гора» готовые изделия.
Я столь подробно остановился на этом примере вовсе не для того, чтобы похвастать своей авторской причастностью. Опыт последующих летных испытаний этой системы показал ее надежность. Можно считать, что это заслуга каждого отдельного участника разработки. Но прежде всего это заслуга руководителей ВНИИЭМа — Иосифьяна и Шереметьевского, которые проявили непримиримость в своих требованиях к наземной отработке, придав ей должную масштабность, невзирая на окрики по срыву сроков, идущие сверху из аппаратов министерств и ВПК.
Глава 8. МЫ СНОВА ВПЕРЕДИ ПЛАНЕТЫ ВСЕЙ
В последние годы жизни Королева мы, перегруженные массой текущих технических и организационных задач, не предвидели, какие из наших начинаний получат дальнейшее развитие, а какие, казалось бы наиболее перспективные, работы окажутся тупиковыми. Прошло сорок лет. При современных темпах научно-технического прогресса — срок не малый.
Практически все самолеты, ракеты и космические аппараты, разработанные в шестидесятых годах в СССР и США, давно морально устарели и сняты с производства. Но есть и исключения. Ракеты-носители Р-7 и «Протон», космические корабли типа «Союз», спутники связи «Молния» и американские Ракеты-носители «Атлас» и «Титан» продолжают жить в космонавтике. Ракета-носитель «семерка», космический корабль «Союз» и спутник связи «Молния» после Королева проходили многократную модернизацию. Это процесс естественный для всякого изделия. Тем не менее основные параметры, внешний облик и даже название сохранились. Одним из параметров, определяющих продолжительность жизненного цикла любого ракетно-космического комплекса, является надежность. Несмотря на моральное старение именно высокая надежность до конца XX века обеспечила эксплуатацию «семерки» и «Союзов». До конца века в мире существуют только две транспортные космические системы, способные вывести человека в космос: наша «семерка» с «Союзом» и американский «Спейс шаттл».
История «Союзов» богата примерами удачных инженерных решений и не меньшим числом ошибок, иногда приводившим к трагическим результатам. В этом отношении она весьма поучительна для всех создателей космической техники.
В 1966 году была проведена структурная реорганизация королевского ОКБ-1. Мы получили новое наименование ЦКБЭМ — Центральное конструкторское бюро экспериментального машиностроения.
Министр Афанасьев утвердил структуру ЦКБЭМ, в которой главными звеньями были тематические комплексы, объединявшие группу отделов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188