ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Отлагая рассмотрение более глубокое до специальной книги, пока заметим лишь следующее о геометрических предпосылках живописи: в распоряжении живописца имеется некоторый вырезок плоскости — холст, доска, стена, бумага и т. д. — и краски, т. е. возможность придавать различным точкам означенной поверхности различную цветность. Эта последняя, в порядке значимости, может не иметь чувственного смысла и должна пониматься абстрактно; так, например, в гравюре чернота типографских чернил не понимается как черный цвет, но есть лишь знак энергии резчика, или, напротив, отсутствия таковой. Но психофизиологически, т. е. в основе восприятия эстетического, это есть цвет. Ради простоты рассуждения мы можем представить себе, что есть только одна краска, черная, или карандаш. Задача же живописца — изобразить на указанной плоскости указанными красками воспринимаемую им, или воображаемую как воспринимаемую, реальность.
Что же, геометрически говоря, значит изобразить некоторую реальность?
Это значит привести точки воспринимаемого пространства в соответствие с точками некоторого другого пространства, в данном случае — плоскости. Но действительность по меньшей мере трехмерна, — даже если забыть о четвертом измерении, времени, без которого нет художества, — плоскость только двухмерна. Возможно ли такое соответствие? Возможно ли четырехмерный или, скажем для простоты, трехмерный образ отобразить на двухмерном протяжении, хватит ли в последнем точек, соответственных точкам первого, или, математически говоря: мощность образа трехмерного и таковая же двухмерного могут ли быть сравнимы? — Ответ, естественно напрашивающийся на ум — «Конечно, нет», — «Конечно, нет, ибо в трехмерном образе — бесконечное множество двухмерных разрезов, и, следовательно, мощность его бесконечно больше мощности каждого отдельного разреза». Но внимательное обследование поставленного вопроса в теории точечных множеств показывает, что он не так-то прост, как это представляется с первого взгляда, и более того, что данный выше ответ, по-видимому естественный, не может быть признан правильным. Определеннее: мощность всякого трех- и даже многомерного образа точно такая же, как и мощность любого двух- и даже одномерного образа. Изобразить четырех- или трехмерную действительность на плоскости можно, и можно даже не только на плоскости, но и на любом отрезке прямой или кривой линии. При этом такое отображение возможно установить бесчисленным множеством, как арифметическим или аналитическим, так и геометрических соответствий. Типом первого может служить прием Георга Кантора, а вторых — кривая Пэано или кривая Гильберта [].
Чтобы пояснить суть этих исследований с их неожиданными результатами возможно проще, ограничимся случаем изображения квадрата со стороною в одну единицу длины на прямолинейном отрезке, равным стороне вышеозначенного квадрата, — т. е. случаем изображения всего квадрата на его собственной стороне; все другие случаи довольно легко могут быть рассмотрены по образцу этого. Так вот, Георг Кантор указал аналитический прием, при помощи которого устанавливается соответствие между каждой точкой квадрата и каждой точкой его стороны: это значит, что если нам определено, двумя координатами x и y, местоположение в любой точке квадрата, то некоторым единообразным приемом мы отыщем координату z, определяющую некоторую точку стороны квадрата, изображение вышеозначенной точки самого квадрата; и наоборот, если указана произвольная точка на отрезке — изображении квадрата, то отыщется и изображаемая этою точкою точка самого квадрата. Таким образом, ни одна точка квадрата не остается неотображенной, и ни одна точка изображения не будет пустой, ничему не соответствующей: квадрат будет отображен на своей стороне. Подобно может быть изображен на стороне квадрата или на самом квадрате — куб, гиперкуб и вообще квадратовидное геометрическое образование (полиэдроид, многоячейник) любого и даже бесконечно большого числа измерений. А говоря общее: любое непрерывное образование любого числа измерений и с любым ограничением может быть отображено на другом любом образовании, тоже с любым числом измерений и тоже с любым ограничением; все что угодно в геометрии может быть отображено на всем что угодно.
С другой стороны, различные геометрические кривые могут быть построены таким образом, что кривая проходит через всякую заданную наудачу точку квадрата, — если вернуться к нашему начальному случаю, — и таким образом устанавливается соответствие точек квадрата и точек кривой геометрически; привести же в соответствие точки этой последней с точками стороны квадрата, как пространств одномерных, уже совсем нетрудно, этим точки квадрата будут отображены на его стороне. Кривая Пэано и кривая Гильберта пред бесчисленным множеством других кривых того же свойства ( — например, пред траекторией биллиардного шара, пущенного под углом к борту, несоизмеримым с прямым; — незамыкающимися эпициклоидами, когда несоизмеримы радиусы обеих окружностей; — кривыми Лиссажу; — родонеями и т. д. и т. д. — ) имеют одно существенное преимущество: соответствие точек двухмерного образа и одномерного ими осуществляется практически, так что соответствующие точки легко находятся, тогда как другими кривыми соответствие устанавливается лишь в принципе, но найти на самом деле, какая именно точка соответствует какой, было бы затруднительно. Не входя в технические подробности кривых Пэано, Гильберта и других, заметим лишь, что своими извивами в духе меандров такая кривая заполняет всю поверхность квадрата, и всякая точка квадрата, при том или другом конечном числе меандризаций этой кривой, систематически накопляемых, т. е. согласно определенному единообразному приему, — будет непременно задета извивами кривой. Аналогичные процессы применимы для отображения, как это разъяснено выше, чего угодно, на чем угодно.
Итак, непрерывные множества между собою все равномощны. Но, обладая одинаковой мощностью, они не имеют одних и тех же «умопостигаемых» или «идеальных» чисел в смысле Г. Кантора, т. е. не «подобны» между собою. Иначе говоря, нельзя отображать их друг в друге, не затрагивая их строения. При установке соответствия нарушается либо непрерывность изображаемого образа ( — это когда хотят соблюсти взаимную однозначность изображаемого и изображения — ), либо — взаимная однозначность того и другого ( — когда сохраняется непрерывность изображаемого — ).
Приемом Кантора образ передается точка в точку, так что любой точке образа соответствует только одна точка изображения, и наоборот, каждая точка этого последнего отображает только одну точку изображаемого.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23